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ABSTRACT
Memory persistency models provide the foundational rules for
software engineers to develop applications that take advantage of
non-volatile memory (NVM), dictating which (and when) writes to
NVM are deemed persistent. Though formalised for Intel-x86 and
Arm architectures, these models remain empirically unvalidated
on actual machines. Conventional validation methods for memory
consistency models fall short as test programs cannot differentiate
between volatile cache reads and those from NVM. To address this,
we employed a commercial device designed to intercept and log data
on a system’s memory bus in their order of arrival. We used this
device to conduct a campaign using litmus tests—small programs
designed to assess specific memory persistency behaviours—aimed
at empirically validating Intel-x86 and Arm machine persistency
guarantees.

We noted out-of-order memory writes and ensured they were
not merely artifacts of our test setup. Analysis revealed Intel-x86’s
architecture cannot be validated via memory bus interception due
to legitimate early subsystem reordering. Intel engineers confirmed
the absence of dependable validation methods for the persistency
claims of their architectures. Meanwhile, an expert-recommended
Arm machine did not align with the formal persistency model due
to a specification loophole, and further investigation suggests that
no market-available Arm machine fully supports NVM.

Our finding for Intel highlights a major concern for software
developers wishing to take advantage of NVM: currently there is, to
our knowledge, no viable way to confirm the persistency guarantees
claimed by Intel. Our results for Arm suggest that our interception-
based approach is viable for reliably detecting reorderings in the
memory subsystem, which will be valuable for empirical validation
once NVM-supporting machines become available.
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1 INTRODUCTION
Non-volatile memory (NVM) combines the speed of DRAM with
the durability and capacity of SSD, retaining data even after system
crashes. As such, NVM (a.k.a. persistent memory) has the potential
to radically change the way we build fault-tolerant software by
optimising traditional and distributed file systems [6, 10, 12, 14,
29, 31], transaction processing systems for high-velocity real-time
data [19], distributed stream processing systems [28], and stateful
applications organised as a pipeline of cloud serverless functions
interacting with cloud storage systems [25, 30].

Modern architectures, including Intel-x86 and Arm, provide
write-back instructions for cache-to-memory operations. Specifi-
cally, Intel-x86 uses clflush(·) while Arm utilises dc_cvap(·) followed
by dsb(sy). These can be harnessed by expert programmers to or-
chestrate the order in which writes to NVM are made persistent.

Formal persistency models such as Px86 [21] for Intel-x86 and
PArm [22] for Arm, co-created with vendor experts, offer rigor-
ous insights for NVM programs. While they are consistent with
architectural specifications, they remain untested on real machines.

Empirical validation is vital for two reasons: holding vendors
accountable for hardware adherence to specs in deployed machines,
on which software developers depend (and which historically have
been inconsistent in the related area of memory consistency [1, 3])
and to verify accurate persistency specifications that software de-
velopers can trust. Our goal is to validate their soundness – ensuring
specs don’t ban plausible behaviours. We also strive to avoid undue
weakness, where specs allow behaviours not witnessed in machines.

In the context of memory consistency models, empirical valida-
tion has become commonplace. Tools such as litmus [4] have been
widely used to run large numbers of small multi-threaded test cases
(called litmus tests) on machines-under-test, in order to see which
threads can see which writes in which order. However, memory
persistency is more intricate. A litmus-like approach will not work
since programs can’t directly sense data persistence – distinguish-
ing volatile cache from persistent memory is challenging.

A naive approach would involve causing a crash (e.g., by power-
ing off) while the program is running, then reading persistent data
from NVM upon restart. However, this only lets us observe the lat-
est persisted write for eachmemory location, not the order of earlier
writes. Additionally, frequent power-cycling makes it impractical
to run the numerous tests needed for comprehensive validation,
and scheduling precise ‘crashes’ becomes nearly impossible.

This brings us to the approach we put forward in this paper:
monitoring writes reaching the NVM using a specialised interposer
positioned between the motherboard and memory module. The
data sensed by the interposer is then relayed to a device called the
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DDR Detective [7] (see Fig. 2). By recording all memory accesses
during a litmus test and analysing the resulting log, we can deduce
the order in which writes become persistent.

We have applied our approach to Intel-x86 and Arm machines.
Simple litmus tests revealed that writes can indeed enter memory
out-of-order (i.e. disagreeingwith the order prescribed by the formal
persistency models), even when they are ‘persist-separated’; that is,
separated by explicit (sequences of) instructions that a programmer
can use to persist writes in a certain order. Nevertheless, our results
remain inconclusive due to intricacies in both architectures.

For Intel-x86, data headed to memory first traverses a battery-
backed write-pending queue (WPQ) in the memory controller [24].
This data persists before leaving the processor, so that our post-
processor observations are too late and are not relevant to order of
persistence (Fig. 1). Still, we investigated whether theWPQ reorders
writes, and indeed found that litmus tests showed out-of-order data
propagation from processor to memory. Due to the battery-backed
WPQ, these findings have no bearing on conformity of the Intel-x86
platform to the Px86 persistency model [21], but they raise two
important points: (1) our findings are relevant for software engi-
neers working with remote direct memory access (RDMA). In this
framework, machines connect and share memory directly through
the network interface card (NIC), bypassing the operating system
and CPU (including its WPQ). This setup poses a challenge for
developers: it lacks assurance for the persistence of remote pending
writes that sidestep the WPQ. (2) the results emphasise a trans-
parency concern in Intel CPU designs. While users ought to be
able to independently verify Intel CPUs, for accountability, there
is currently no method to do so, a fact even recognised by an Intel
persistency engineer. Our research brings this issue to the forefront.

On Arm machines, without a WPQ-like component, DDR De-
tective should recognise reorderings against the Arm persistency
model. Although we acquired an Arm v8.2 compliant machine,
a loophole in the Arm manual means there is no clear point-of-
persistency.1 Technically, the out-of-order NVM writes identified
by our tests do not breach the persistency specification, due to this
loophole. As of now, no commercial Arm systems support NVM,
but if one does, our method is primed to validate its assertions.

Contributions We claim two research contributions:

(1) an experimental setup demonstrating the potential to vali-
date memory persistency models, aiding software engineers
in understanding system behaviour; and

1A Point of Persistence (PoP) designates a location within the persistence domain
where data is guaranteed to be retained, even if power is lost.

(2) empirical evidence revealing memory access reordering be-
tween the CPU and memory in both Intel-x86 and Arm ma-
chines, underscoring considerations for software engineers
working with RDMA technologies.

SupplementaryMaterial: Replicating our results, given the com-
mercial nature of DDR Detective, may pose challenges. However,
our automation scripts, litmus tests, and raw data are accessible as
supplemental material at: https://zenodo.org/records/10427213.

2 EMPIRICAL INFRASTRUCTURE
We have devised a novel testing infrastructure to validate mem-
ory persistency models, outlined in Fig. 2. Using the FS2800 DDR
Detective interposer [7], we tap into memory signals, analysing
them through its Probe Manager software. This setup also enables
remote SSH access to the target system, aiding automation.

The DDR Detective presented four challenges:
• Our litmus tests use virtual addresses, whereas DDR De-
tective records geometric addresses, reflecting the chip’s
internal organisation like rank, bank, row, and column.

• The DDR Detective can log the address of each memory
write, but not the actual data (value) written. This means
that we cannot infer the order of writes to the same location,
only the order of writes to different locations.

• Configuring the DDR Detective to log all write operations
quickly fills its storage. Though address logging can be re-
stricted using a wildcard pattern, selecting the right pattern
without prior knowledge is challenging.

• The DDR Detective is controlled by a GUI application with
no command-line support, complicating automation.

We overcome these challenges as follows, where the numbers
refer to the steps depicted in Fig. 2.
1 The first step involves crafting a litmus test: a succinct program

focusing on specific memory interactions, inspired by Raad
et al. [21, 22]. While litmus tests can be auto-generated using
Alloy methods [18, 21], we opted for a basic single-thread test
with two distinct writes (Fig. 3) since it readily reveals evident
issues, making complex tests redundant. Yet, our method can
accommodate advanced multi-threaded testing scenarios.

2 We now begin the process of identifying active geometric ad-
dresses. The logging process has been streamlined by instruct-
ing the DDR Detective to exclusively log ‘writes’ (effectively,
all ‘writes’ system-wide) upon detecting the first one.

3 Upon instructing DDR Detective to log, the litmus test’s ‘pream-
ble’ is launched. This allocates locations and carries out distinct
write counts for each – e.g., 100 to one, and 200 to another if
two locations are used. Subsequently, the test pauses for ap-
proximately 20 seconds (reason in step 4 ).

4 Meanwhile, once the DDR Detective observes any memory
write, it starts logging all writes across the system. We set it to
log a maximum of 8,000 writes, saved in a CSV file for analysis
in step 5 .2 The 20-second pause in step 3 allows ample time
for generating and analysing the CSV log file.

2The log size, referred to as ‘trace memory depth’ in FuturePlus terminology, is ad-
justable. For our experiments, 8,000 writes sufficed.
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Figure 2: Our flow for validating persistency models; a colour nested inside another denotes an embedded program within
outer code; a hexagon allows the flow to continue if the condition inside is true.

5 Our Python script then scans the log to identify the twomemory
locations with 100 and 200 writes. This allows pinpointing the
relevant geometric addresses.

6 With the relevant geometric addresses identified, we reset the
DDR Detective log. Subsequently, we direct DDR Detective to
resume logging, exclusively for accesses matching a particular
wildcarded pattern (since specific address sets are not supported,
only one pattern can be used). The pattern is the most specific
one that matches all geometric addresses determined in step 5 .

7 The litmus test script is then reactivated, running multiple it-
erations within a 60-second timeframe as shown in Fig. 3. We
currently do not check the post-recovery condition during each
iteration; this becomes evident upon log inspection.

8 The probe keeps collecting data until the log hits a set size.
9 Another Python script filters the log, removing entries linked

to addresses other than those reverse-engineered in step 5 .
10 Lastly, we inspect the log to check the post-recovery condition

for each litmus test iteration. In Fig. 3, this involves ensuring
that writes to x and y strictly alternate in the log. Consecutive
writes to the same location indicate reordering, addition, or
deletion of writes, all signaling a persistency model violation.

Automation TheDDRDetective probemanager lacks a command-
line interface (CLI), relying solely on a Windows GUI. This hinders

automation and remote access. We addressed this with AutoIt [5],
a tool that automates Windows GUI tasks.

3 EXPERIMENTAL EVALUATION
We now present experiments that put the process depicted in Fig. 2
into practice. For Intel-x86, we utilised an Intel® Xeon® CPU E5-
1630 v3 at 3.70GHz with 128 KiB L1, 1 MiB L2, and 10 MiB L3 caches.
On the ARM side, we employed an Ampere® Altra™ M96-30 SOC
with 96 Arm v8.2+ Cores and caches of 64 KB L1 I-cache, 64 KB L1
D-cache, and 1 MB L2.

Our experiments rely on the program in Fig. 3. It accesses ad-
dresses 𝑥 and 𝑦 in 2,000-batch runs, with the DDR Detective log-
ging the memory bus transmission order. The program has a post-
recovery condition indicating allowable values for 𝑥 and 𝑦 upon
recovery. Since it’s not programmatically checkable, we use the
DDR Detective to analyse the logged memory instruction order.

Metrics Our experimental evaluation employs two key metrics:
reorderings and deviations. A reordering occurs when the observed
instruction sequence diverges from the vendor-prescribed order.
Deviation (∆) measures the gap between the actual persisted writes,
as logged by the interposer, and the test program’s issued writes.

Key Observations For Intel-x86, our results showed slight devia-
tions and rare reorderings. We believe that, in their current state,
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1:	𝑥 ← 𝑝𝑜𝑠𝑖𝑥_𝑚𝑒𝑚𝑎𝑙𝑖𝑔𝑛(!"	$%&'()𝑠𝑖𝑧𝑒)!"	$%&'(, 𝐶𝐴𝐶𝐻𝐸_𝐿𝐼𝑁𝐸_𝑆𝐼𝑍𝐸)
 2:	𝑦 ← 𝑝𝑜𝑠𝑖𝑥_𝑚𝑒𝑚𝑎𝑙𝑖𝑔𝑛(!"$%&'()𝑠𝑖𝑧𝑒)!*$%&'(, 𝐶𝐴𝐶𝐻𝐸_𝐿𝐼𝑁𝐸_𝑆𝐼𝑍𝐸)
 
 3:	𝑟𝑒𝑔 ← 0
 4:𝐟𝐨𝐫	 𝑥 ← 1	𝐭𝐨	 100	 𝐝𝐨
 5: 𝑥 ← 1; asm 𝑑𝑐_𝑐𝑣𝑎𝑝 𝑥 ; asm 𝑑𝑠𝑏 𝑠𝑦 ;

 6: 𝑦 ← 1; asm 𝑑𝑐_𝑐𝑣𝑎𝑝 𝑦 ; asm 𝑑𝑠𝑏 𝑠𝑦 ;
 7: 𝑦 ← 1; asm 𝑑𝑐_𝑐𝑣𝑎𝑝 𝑦 ; asm 𝑑𝑠𝑏 𝑠𝑦 ;
 8:	𝐞𝐧𝐝
 9:	𝑠𝑙𝑒𝑒𝑝 20

𝑙𝑖
𝑡𝑚

𝑢
𝑠	
𝑡𝑒
𝑠𝑡

𝑝
𝑟𝑒
𝑎
𝑚
𝑏
𝑙𝑒

10:	𝐰𝐡𝐢𝐥𝐞	 𝑡𝑖𝑚𝑒 < 60	𝐝𝐨	
11:	 + +𝑟𝑒𝑔
	
12:	 𝑥 ← 𝑟𝑒𝑔;	
13:	 asm 𝑑𝑐_𝑐𝑣𝑎𝑝 𝑥 ; asm 𝑑𝑠𝑏 𝑠𝑦 ;	 // 𝑝𝑒𝑟𝑠𝑖𝑠𝑡 𝑥
14:	 𝑠𝑙𝑒𝑒𝑝(⋅)							// suspend execution
15:	 𝑦 ← 𝑟𝑒𝑔;	
16:	 asm 𝑑𝑐_𝑐𝑣𝑎𝑝 𝑦 ; asm 𝑑𝑠𝑏 𝑠𝑦 ;	 //	 𝑝𝑒𝑟𝑠𝑖𝑠𝑡 𝑦
17:	 𝑠𝑙𝑒𝑒𝑝(⋅)	 // suspend execution

18:	 // persistency property
19:	 // 𝑦+, = 𝑟𝑒𝑔	 ⟹ 𝑥+, = 𝑟𝑒𝑔
20:	𝐞𝐧𝐝

Figure 3: A litmus test in ARMv8.2 running in a loop and
preceded by the corresponding preamble; the asm keyword
declares inline assembler instructions that are embedded
within theC code; 𝑥𝑝𝑑 denotes the value ofmemory location 𝑥
read from the persistence domain utilising physical probing.

Intel machines cannot be reliably and independently validated for
persistency behaviour. Our study is the first to spotlight this issue.

In the context of Arm, we identified 2.5% deviations and 5.78%
reorderings. Ampere shared that their Altra™ SOC doesn’t support
fine-grained persistent memory and is devoid of a Point of Persis-
tence. Due to an Arm8.2 loophole, DC CVAP3 can mimic DC CVAC
without a defined PoP. At present, programmers lack the means to
ascertain the presence of a PoP or the ‘meaningful’ implementation
of DC CVAP within a system, without liaising with the designer.

On the ARM machine, a notable concern was the frequent in-
terception of more writes by DDR Detective than those generated
by the litmus test. Explaining this phenomenon remained elusive,
though fewer propagated writes might be attributed to compiler
optimisations, for instance.
We also pursued some ‘curiosity-driven’ experiments, exploring:
DC CVAP vs. DC CVAC: The data from Figs. 4a and 4b doesn’t
offer sufficient statistical evidence to indicate that DC CVAP defaults
to a different behaviour than DC CVAC.
Reordering & Memory Size: Larger memory chunks exhibit in-
creased reorderings. Interestingly, a marked transition occurs be-
yond 64 KB, hinting at the influence of the L1 cache size (Fig. 4c).
Repeated Persists & Reordering: As the persist (DC CVAP) rep-
etitions grow, reorderings wane, implying a tighter adherence to
expected specifications (Fig. 5a).
Processor Suspension’s Effect:Delays following thewrite-persist-
barrier in the litmus test decrease reorderings, implying a closer
– but not exact – alignment with DC CVAP specs (Fig. 5b). The

3The ARM system instructions DC CVAP and DC CVAC stand for Data or unified Cache
line Clean by Virtual Address to the point of Persistence and Coherency, respectively.
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Figure 4: (a) reorderings and (b) deviations corresponding to
varying DC CVAP/DC CVAC counts; (c) deviations/reorderings
against uniform memory size allocation. Each data point
represents a 2K-iteration test outcome on the Arm machine.
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Figure 5: (a) deviations/reorderings based on changing persist
counts betweenwrites; (b) effects of intermittent suspensions
post each write (each mark reflects a 2K-iteration test out-
come); (c) random distribution of anomalies from a single
2K-iteration run.

presence of a delay, rather than its specific duration, is crucial for
this shift.
Distribution of Reorderings: Besides the sheer number of anom-
alies, we assessed their distribution. Figure 5c reveals that, while
anomalies spread across all executions, a denser concentration ap-
pears in the first half of the dataset.

Overall, our inquisitive tests underscore our setup’s ability to
provide insights into memory write dynamics and their interplay
with various factors. Our method also sets the stage for future vali-
dations as persistency support becomes available in Arm systems.

4 RELATEDWORK
Our work is situated within a rich lineage of research that has
systematically validatedmemory consistencymodels across an array
of architectures, including x86 [4, 26], IBM Power [23], Arm [2],
GPUs [1], and hybrid CPU/FPGA systems [8]. The landscape of
these models has evolved, recently integrating facets like virtual
memory [27] and non-temporal accesses [20]. While traditional
consistency models are amenable to software-centric validation, the
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nuanced interplay of caches in modern architectures necessitates a
tailored validation paradigm for persistency models.

Alongside our persistency model validation, there’s a significant
focus on testing persistent programs. PMTest [17] and similar tools
like Pmemcheck [11] and PMAT [9] detect bugs through user anno-
tations and dynamic analysis. XFDetector [16] delves deeper, pin-
pointing unforeseen interactions surrounding crashes. PMFuzz [15],
a test-case generator, emphasises path coverage, especially where
persistency-related commands appear. These tools rely on the ven-
dor’s architectural specification as the ground truth, underscoring
the significance of our efforts in enhancing their reliability.

5 CONCLUSION AND FUTURE PLANS
We have introduced a litmus-testing campaign to empirically vali-
date persistency guarantees of Intel-x86 and Arm systems. Tradi-
tional memory validations fall short in this realm, emphasising the
significance of our tailored approach. Our experiments showcase
discrepancies between observed behaviours and vendors’ speci-
fications, underscoring the need for hands-on testing over mere
reliance on documentation. We provide a reusable methodology to
validate persistency guarantees if vendors pledge new promises in
their forthcoming releases.

We see significant potential in advancing smarter, bespoke tech-
niques for memory persistency validation. Our upcoming efforts
will involve: (1) auto-generating ‘interesting’ test cases from Alloy
models to spotlight corner scenarios (marginal weak behaviours),
using an approach akin to [13]; (2) refining generalised strategy
to automatically extract intricate violation patterns from logs (rep-
resentative of the permissible persistent memory state) applicable
to any test case, with a keen focus on the nuances of complex
multi-threaded litmus tests.

As another step forward, we aim to pinpoint the exact location
of the stored value within the memory hierarchy on Intel archi-
tectures through a methodical memory hierarchy timing attack
using timestamped instructions. We plan to leverage inherent tim-
ing variations for insightful inferences. Additionally, we intend to
explore systems-on-chip, such as Xilinx’s Zynq Ultrascale+, which
integrates a multicore Arm processor with programmable logic.
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