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Abstract. To represent finite sets of integers on an interval 0..n, Briggs
and Torczon studied a very simple data structure in 1993, called sparse
sets. With this representation, initialization, membership test, insertion
and deletion of an element are O(1) operations. This data structure is
often used in compilers to allocate registers or to represent the objects
in a video game. A variant of this data structure is also used in finite
domain constraint solvers to represent the domains of integer variables.
This variant makes it a backtrackable data structure. We have formal-
ized and verified the original data structure and its variant in Why3.
Set operations such as intersection and union are formally verified, even
though they are less commonly used with this representation of sets. To
our knowledge this is the first formal verification of the backtrackable
variant of sparse sets used as domains.

1 Introduction

Sets are seldom primitive objects in programming languages or specification for-
malisms. There are such objects in the old programming language Setl [21] or
in the logic programming language {log} [8] and also in the formal languages
B [1] or Event-B [2] and TLA+ [14]. More usually, they are available as im-
plementations in libraries, based on underlying data structures such as sorted
lists, red-black trees, AVL trees, B trees, skiplists, etc. In this paper, we focus
on sparse sets, studied by Briggs and Torczon [4] in 1993, also appearing as an
exercise in the famous book ”The Design and Analysis of Computer Algorithms”
written by Aho and Hopcroft [3]. This data structure dates back to computer
folklore, it is used in different applications like register allocation, video game,
constraint solving. With this mutable representation based on arrays and sim-
ple manipulations, initialization, membership test, insertion and deletion of an
element are O(1) operations. Many implementations exist on the web, in several
languages, e.g. Java, C++, C, Rust.

Sparse sets appear as a benchmark (Constant-time sparse array) of VACID-0,
a suite of benchmark verification problems proposed in 2010 [17]. The sparse sets
data structure as it is described by Briggs and Torczon is a particular case of
the latter in which there is one less indirection. A solution1 where 3 operations

1 available at https://toccata.gitlabpages.inria.fr/toccata/gallery/
vacid_0_sparse_array.en.html
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(membership, add and remove) are implemented, has been given using Why3 by
Filliâtre and Paskevich.

Sparse sets are also used in constraint solvers as an alternative to range
sequences or bit vectors for implementing domains of integer variables [15] which
are nothing else than mathematical finite sets of integers. Sparse sets as domains
are slightly different from sparse sets introduced by Briggs and Torczon making
them very easy to store and restore when backtracking for finding solutions.

Our main contribution is a formally verified implementation of sparse sets
as domains and its various operations, developed with the deductive verifica-
tion tool Why3 [12], extracted in OCaml. In addition to classical set operations
(test membership, remove, etc.), we specify and verify an operation that allows
the user to undo some operations very easily (in one simple assignment). This
contribution brings some more confidence in the data structures used in con-
straint solvers, as it has been done by Ledein and Dubois [16] for the traditional
implementation of domains as range sequences.

In [7], Cristiá and the author have formalized this sparse set as domain
variant and verified three simple operations (remove, bind and membership)
in three formalisms Why3, EventB and {log}. However they do not address the
verification of the backtrackable dimension and in particular the undo operation.

The article is structured as follows. In Section 2 we give an informal overview
of sparse sets. In Section 3, we briefly introduce Why3 and WhyML. In Section 4,
we detail our WhyML implementation of sparse sets and discuss its deductive
verification. In Section 5, we first introduce the modifications to the data struc-
ture when it is used to represent the domain of integer variables in constraint
solvers, then we present the WhyML formalization of this backtrakable variant
by focusing mainly on the additional artefacts we used to verify the undo op-
eration. Section 6 presents some tests performed on the OCaml code extracted
from our models. Finally we conclude and present some future work.

All the code described in this paper is available on https://gitlab.com/
cdubois/why3_sparsesets.

2 Sparse sets

Sparse sets are used to represent subsets of natural numbers up to N − 1, where
N is any non-zero natural number. The range 0..N − 1 is called the universe of
the sparse set in the following. A sparse set D is represented by two arrays of
length N called Dense and Sparse, and a natural number sizeD2. The current
elements of the finite set are those in Dense[0, sizeD − 1] — let us call this
subarray the effective part —, the rest of the array being garbage. The array
Sparse maps any value v ∈ [0, N − 1] to an index indv in Dense or is not
initialized. Thus, for the current elements v of the set, Sparse[v] has a value i
in the range [0, sizeD − 1] and Dense[i] is equal to v. If D is empty (resp. the
full set), sizeD is equal to 0 (resp. N).

2 The name of this data structure may be explained by the fact that the Sparse array
may have holes whereas the Dense array is more compact.

https://gitlab.com/cdubois/why3_sparsesets
https://gitlab.com/cdubois/why3_sparsesets


The two invariants of the data structure representing the set D are as follows:

D ⊆ 0..N − 1 ∧D = {Dense[i] | 0 ≤ i < sizeD} (P1)
v ∈ D ⇐⇒ 0 ≤ Sparse[v] < sizeD ∧Dense[Sparse[v]] = v (P2)

Fig. 1a illustrates this representation. This state has been reached after in-
serting the elements 3, 6, 4, 7, 5 and 8 in the empty set. The blue arrows em-
phasize the invariant P2.
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Fig. 1: A sparse set and some operations

Checking if an element v belongs to the sparse set D simply consists in the
evaluation of the expression 0 ≤ Sparse[v] < sizeD && Dense[Sparse[v]] = v.
Removing an element consists in replacing v in Dense with the last element
e of the Dense effective part (e = Dense[sizeD − 1]), decrementing sizeD
and updating Sparse[e]. This operation is illustrated in Fig. 1b: 4 and 7 are
removed in this order from the sparse set represented in Fig. 1a. We can see
two occurrences of both 8 and 5 but their presence in Dense[sizeD..N ] does not
matter.

Inserting an element v is implemented as follows: put v in Dense at the
position sizeD, update Sparse[v] with sizeD and increment sizeD. In Fig. 1c,
0 has been inserted in the sparse set represented in 1b.

Clearing the sparse set, that is making it represent the empty set, is very
efficient, just set sizeD to 0. The cardinality of a sparse set is exactly the value
of sizeD. All the previous operations are constant-time. Operations like forall,
exists, union, intersection, equality only require to explore the elements in the
effective part of Dense, and are thus in O(sizeD).



3 Why3 and WhyML

Why3 [12] is a platform for deductive program verification that provides a spec-
ification and programming language called WhyML. It relies on external au-
tomated and interactive theorem provers to discharge automatically generated
verification conditions (VC). The SMT provers Alt-ergo, CVC4 and Z3 are used
here. Transformations, aka tactics, are also provided, making Why3 an interac-
tive proof environment. Why3 supports modular verification and includes some
mechanisms for managing modularity, abstraction and genericity [13].

WhyML allows the user to write functional or imperative programs featur-
ing polymorphism, algebraic data types, pattern-matching, exceptions, mutable
variables, arrays, etc. These programs can be specified by using contracts (pre-
and post- conditions) and assertions (e.g. variants, loop invariants). User-defined
types with invariants can be introduced, invariants are verified at the function
call boundaries. Furthermore to prevent logical inconsistencies, Why3 generates
a verification condition to ensure that such a type is inhabited. To help the ver-
ification, a witness can be explicitly given by the user (by clause in Fig. 3). The
old operator can be used inside post-conditions to refer to the value of a term
at the call program point.

Correct-by-construction OCaml (and, more recently, C) programs can be
automatically extracted from verified WhyML programs. More detail is provided
throughout the paper as necessary.

4 Formal Verification of Sparse Sets

This section deals with the data structure as it is described in Briggs and Tor-
czon’s paper [4]. We provide a WhyML specification and an implementation of
the data structure and its operations.

4.1 Abstract Specification

We start with a high-level module that contains the abstract specification of
type t and operations on that type, where t is the type of subsets of an interval
of natural numbers (beginning at 0 as in [4]). Fig. 2 contains an excerpt of
that module. The type t here is specified as a record with two fields only used
for specification: the size n of the support universe and setD which has to be
understood as the high-level model of the data structure. The fset logical type
constructor is defined in the module set.FsetInt of the standard library. Set
mathematical symbols that appear in the contracts are used here and in the rest
of the paper to denote the mathematical set operations acting on mathematical
sets also defined in the module set.FsetInt. The == infix operator is the
mathematical set equality. The writes clause in a contract indicates that the
corresponding function updates its argument. The operations are implemented in
the refining module that also provides a full definition for the type. We describe
this refining module in the next subsection.



module FiniteNatSet
use int.Int
use set.FsetInt

type t = abstract {n : int ;
mutable setD : fset int ; }

invariant {setD ⊆ (interval 0 n)}

val empty_set (nn : int) : t
requires {0<=nn}
ensures {result.setD = ∅}
ensures {result.n = nn}

val member (v : int) (a : t) : bool
requires {0<=v}
ensures {result = v ∈ a.setD}

val cardinal_sparse (a : t) : int
ensures {result = |a.setD|}

val add (v : int) (a : t) : unit
requires {0<=v<a.n}
ensures {a.setD == (old a.setD) ∪ {v} }
writes {a.setD}

val remove (v : int) (a : t) : unit
requires {0<=v<a.n}
ensures {a.setD == (old a.setD) − {v}}
writes {a.setD}

end

Fig. 2: Abstract specification



4.2 Concrete Implementation

The abstract type t is implemented as the record type tsparse (see Fig.3)
whose fields are the size of the universe n, the two mutable arrays dense and
sparse, the mutable bound sizeD such that the subarray dense[0..sizeD-1]
contains the current elements of the sparse set and the ghost mathematical and
abstract model setD. Why3 will generate verification conditions to ensure that
the concrete implementation respects the abstract specification.

This record type definition is constrained by invariant properties: the length
of both arrays is n which is a positive number, contents are belonging to the
integer range 0..n− 1 (Inv1), sizeD is between 0 and n (Inv2), the two arrays
must be consistent for those elements in the set (Inv3) (P2 in Sect. 2). Fur-
thermore the last property, Inv5, relates the abstract model with the concrete
representation as in the property P1 of Sect. 2.

In [4], Briggs and Torczon emphasize the fact that the two arrays do not
require to be initialized when allocated. In the solution given by Filliâtre and
Paskevich to the formal verification of sparse arrays, the arrays are not initialized
too [11]. They specify a non initialized memory with the help of a malloc
function. In our implementation we initialize the arrays dense and sparse
with a negative value (-1) when they are created. We could have reused this
approach in our formalization, but we did not in order to stay in line with the
variant developed in the next section.

let constant initval : int = -1
predicate dom_ran (a : array int) (n: int) =
0 <= n && a.length = n && forall i. 0<=i<n -> initval<=a[i]< n

type tsparse = { n : int;
mutable dense: array int;
mutable sparse: array int;
mutable sizeD: int;
mutable ghost setD : fset int; }

invariant {
(*Inv1*) dom_ran dense n && dom_ran sparse n &&
(*Inv2*) 0 <= sizeD <= n &&
(*Inv3*) (forall i:int. 0 <= i < sizeD ->

(0 <= dense[i] && sparse[dense[i]]=i)) &&
(*Inv4*) setD ⊆ (interval 0 n) &&.
(*Inv5*) forall x: int. 0<= x < n -> (x ∈ setD <->

(0 <= sparse[x] < sizeD && dense[sparse[x]] = x))
}
by {n = 0; dense = make 0 initval; sparse = make 0 initval;

sizeD = 0; setD = ∅}

Fig. 3: WhyML type of a sparse set



The code of the operations on sparse sets are the straightforward translation
of the algorithms in [4], except for the supplementary ghost code (e.g. the last
statement in remove sparse) which updates the abstract model a.setD. The
deletion operation, named here remove sparse, is shown in Fig. 4.

In addition to the previous constant-time operations, the following functions
have been implemented and verified:

− forall: check if all the elements of the sparse set satisfy a predicate (linear
with respect to the number of elements in a.setD);

− exists: check if one element of the sparse set satisfies a predicate (linear with
respect to the number of elements in a.setD);

− tolist: return the list of elements (linear with respect to the number of ele-
ments in a.setD);

− copy: create a copy of a sparse set (linear wrt the number of elements in
a.setD);

− union of 2 sparse sets : create a new sparse set (linear wrt the number of
elements in each set);

− in place union: update the first argument required to have the largest uni-
verse (linear wrt the number of elements in the second argument);

− intersection of 2 sparse sets: create a new sparse set (linear wrt the number
of the smallest set).

Their deductive verification required to invent and add some formal annota-
tions like loop invariants, ghost code and lemma functions. A typical example is
the implementation of cardinal sparse illustrated in Fig. 4. Its code is very
simple since the number of elements in the sparse set a is exactly a.sizeD but
a lemma-function, cardinal sizeD, is used to prove the function’s contract as
a lemma that will be provided to the provers. The latter states that cardinal
a.setD = a.sizeD by going through the dense array up to sizeD and gath-
ering and counting its elements.

VCs for the functions concern the conformance of the code to the post-
condition and also to the invariant attached to the tsparse type.

4.3 Proofs

The proof of all the VCs are done automatically using three automatic provers,
CVC4, Alt-Ergo and Z3, using the strategy Auto Level 23. Statistics per prover,
number of proofs, time (minimum/maximum/average) in seconds, are recorded
in Fig. 5.

4.4 Extraction of OCaml Executable Code

To extract OCaml executable code from this development, we modified the pre-
vious WhyML code to use machine integers and mathematical integers. In our

3 and only one assertion in the lemma function about the cardinality.



let remove_sparse (v : int) (a : tsparse)
requires {0<=v<a.n}
ensures {a.setD == (old a.setD) − {v}}
=
let i = a.sparse[v] in
if 0 <= i < a.sizeD && a.dense[i]=v then
let e = a.dense[a.sizeD - 1] in
a.dense[i] <- e ; a.sparse[e] <- i ;
a.sizeD <- a.sizeD - 1;
a.setD <- a.setD − {v}

(* a lemma function to help the verification*)
let lemma cardinal_sizeD (a : tsparse)
ensures {|a.setD| = a.sizeD}
=
let ghost ref s = FsetInt.empty in
let ghost ref nb = 0 in
for i = 0 to a.sizeD - 1 do
invariant {forall x:int. (exists j. 0<=j<i && x = a.dense[j]) <-> x ∈ s}
invariant {nb = |s| && nb = i}
s <- s ∪ {a.dense[i]};
nb <- nb + 1

done ;
assert {a.setD == s && nb = a.sizeD }

let cardinal_sparse (a : tsparse) : int
ensures {result = |a.setD|}
=
return a.sizeD

Fig. 4: Implementation of some sparse set operations in WhyML

Prover nb.proofs min.time(s) max.time(s) av.time(s)

Z3 4.8.9 1 0.05 0.05 0.05
Alt-Ergo 2.5.1 19 0.09 1.15 0.54

CVC4 1.6 205 0.03 8.18 0.18

Fig. 5: Statistics per prover: number of proofs, time (minimum/maximum/aver-
age) in seconds



case it requires only syntactical modifications regarding the type of integer vari-
ables and arrays and some insertions of coercions between machine integers and
mathematical integers in the logical assertions. The proofs remain all automatic.

This data structure is also often proposed as a bounded data structure, in
which the set is constrained to have at most a given cardinality m. We can find
several implementations of this variant on the Web. In that case the length of
the dense array is m. The abstract type t and the concrete type tsparse
are modified to take into account this maximal capacity. Some functions (e.g.
add and union) are also concerned with this limit. This new requirement does
not bring any difficulty for the verification. We have implemented this variant in
WhyML and verified it with Why3. When machine integers are used, the union
function requires an additional pre-condition for not going to an overflow.

5 Backtrackable Sparse Sets as Domains

In this section we focus on a variant of sparse sets used in some constraint solvers
(e.g. MiniCP [18], OsCaR [20]) to represent the domain of an integer variable,
i.e. the finite set of possible values for that variable [15]. In such a context,
to find a solution to a collection of constraints on some variables, or to show
that the problem is unsatisfiable, the use case is as follows: for a variable X,
initialize Domain(X) = 0..N − 1, for some N , then propagate constraints to
prune Domain(X), then set Domain(X) to a singleton containing a value of
the pruned domain, propagate again, etc., backtrack if necessary. Thus, once
the domain is initialized, there is no need to add any value, only deletions are
performed. The advantage of sparse sets, as we have seen, is that membership
and deletion operations can be performed in constant time. Furthermore, with
a simple variation, these data structures are easy to restore when exploring
solutions in an imperative setting, making backtracking cheap. Even if they are
not used in constraint solving, we keep in our verified implementation the add
and union operations but we will have to take care of the fact that they break
reversibility. In the rest of the paper, to refer to this variant, we sometimes use
the expression sparse sets as domains or shortly domains.

5.1 Algorithmic Variant

In this variant, the property P2 is enforced for every value in Dense (not only
in Dense[0..sizeD-1]): Sparse[Dense[i]] = i for all i ∈ 0..N − 1, called now P ′

2.
Checking the membership of value v becomes trivial: just check Sparse[v] <
sizeD. Removing an element v now consists of swapping v with the last element
in Dense, decrementing sizeD and also updating Sparse. An example is shown
in Fig. 6. As pointed out in [15], the values in dense[sizeD..N − 1] are not
changed by any operation, in particular by a deletion. Let us call this property
P3. This property can easily be added as an additional post-condition of the
remove operation. The other operations remain the same (even if add and union
are not used in constraint solving). We introduce a new function bind, which



takes an argument v and reduces the set to the singleton {v}. It is useful in the
context of constraint solving, to bind the value of a variable when exploring the
search space. Its behaviour is very similar to remove: v is swapped with the
last element in sparse, dense is updated accordingly, and sizeD is set to 1.
Illustrations are given in Fig. 6.
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Fig. 6: A sparse set as domain and a deletion

Sparse sets in this variant are now easily backtrackable (or reversible), the
only element to be stored and restored being the value of sizeD. Fig. 7 illustrates
this with a simple example. Let a be the sparse set in Fig. 7a denoting the set
D0. We store the current value of a.sizeD, which is 6. Then we remove 1,
6 and 3 from a, whose resulting value is described on Fig. 7b. To restore the
initial situation, it is sufficient to set a.sizeD to the value previously stored,
i.e. 6, see Fig.7c. We recover exactly the same mathematical set of elements,
even if the value of the two arrays is different from the value in Fig. 7a. The
behaviour is the same when backtracking after a bind operation, or a destructive
intersection operation, or a combination of all of these. However insertion and
destructive union operations break this possibility, we keep them but after their
use, all checkpoint information is lost. We introduce the operation undo to come
back to a previously met situation, its algorithmic content is very simple but its
specification needs more work.

5.2 WhyML formalization

We follow the same approach with an abstract specification (module FiniteNat-
Set) and a concrete implementation. To take into account P ′

2, we have to change
the type invariant of the tsparse type. To specify undo, the modification is
deeper and impacts both the abstract type t and the concrete type tsparse.

Abstract Specification The type definition of the abstract type t is shown
on Fig. 8. We introduce an additional abstract variable, states, of type array
(option (fset int))4, which stores the different successive states of the

4 Since it is only used for specification and proof, it would be better to use a sequence
or a function rather than an array, which is usually reserved for code.
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Fig. 7: Backtracking on a sparse set as domain

set, i.e. the successive mathematical models. It is defined as an array of length
n+1, indexed by all the possible cardinalities of setD and containing either
None, meaning that the corresponding cardinality is not reachable by undoing
operations or Some s where s is a mathematical set. Each time an operation
modifying the sparse set is performed, its current mathematical model is stored in
states[|setD|]. Because of the bind operation, states may have holes (i.e.
None) between two registered models. The predicate valid states specifies
the well-formedness of the array states.

Fig. 8 also contains the abstract specification of the undo operation. It takes
an argument that is the cardinality of the set to which to come back. This one
must be greater than the cardinality of the current set and the corresponding
state must have been encountered in the past, so its mathematical model must
have been registered in states. The post-condition specifies that after calling
the operation the model is the one stored in states[p] and the previous states
have not changed for cardinalities greater than p. The new value of states is
well-formed, which is implicit since the type invariant associated with t must
be preserved.

Concrete Implementation The tsparse type is adapted in the same way as
the abstract type t (see Fig. 9). An additional ghost variable states is intro-
duced and constrained to be well-formed. Furthermore a new property, Inv10,
makes the connection between states and sparse: if s is the mathematical
set registered in states at index i, then its elements are exactly those that are
in dense[0,i]. Again as a property in the type invariant, it must be preserved



predicate valid_states (states : array (option (fset int)))
(setD : fset int) (n : int) =

states.length = n+1 &&
states[|setD|] = Some setD &&
(forall i. 0 <= i < |setD| -> states[i] = None) &&
(forall i:int, s : fset int. 0<=i<=n -> states[i] = Some s ->

s ⊆ (interval 0 n) && |setD| <= i && setD ⊆ s)

type t = abstract {n : int ; mutable setD : fset int ;
mutable states: array (option (fset int));

}
invariant {subset setD (interval 0 n) &&

valid_states states setD n
}

val remove (v : int) (a : t) : unit
requires {0<=v<a.n && v ∈ a.setD}
ensures {a.setD == remove v (old a.setD)}
ensures {forall i. 0 <= i <= a.n -> i 6= |a.setD| -> a.states[i] = (old a).states[i]}

val add (v : int) (a : t) : unit
requires {0<=v<a.n && v /∈ a.setD}
ensures {a.setD == add v (old a.setD)}
ensures {forall i. 0 <= i <= a.n -> i 6= |a.setD| -> a.states[i]= None}

val undo (a : t) (p : int) : unit
requires {cardinal (a.setD) < p <= a.n}
requires {exists s. a.states[p] = Some s}
ensures { a.setD == from_option ((old a).states[p])}
ensures {forall i. p < i <= a.n -> a.states[i] = (old a).states[i]}

Fig. 8: Abstract type t and undo abstract specification



by any operation modifying an argument of type tsparse. Furthermore Inv3
is modified to take into account that dense and sparse are now inverse and
Inv5 is simplified.

The code of the undo operation is shown in Fig. 9. Its contract is similar to
that of the abstract specification. Its computational part is only the last state-
ment, the rest is some ghost code to update the model (a.setD and a.states).
In particular, to maintain the invariant, all states between a.sizeD and p are
deleted in a.states, thanks to the fill operation. The operations for remov-
ing and inserting an element are also illustrated in that figure. The computa-
tional part is composed of the two first statements. Besides the modification
of the a.setD abstract set, the ghost code updates the a.states array: the
former operation just stores the current state while the latter also erases all the
previous stored models.

Proofs The proof of all the VCs are done automatically using two automatic
provers, CVC4 and Alt-Ergo using the strategy Auto Level 2. Statistics per
prover, number of proofs, time (minimum/maximum/average) in seconds, are
recorded in Fig. 10.

6 Some Experimentations

OCaml code was extracted from the WhyML models (using machine integers) of
all the variants we have developed. We implemented a naive implementation of
the Erathosthenes Sieve algorithm following a Web article5 presenting sparse set
implementations in C++, using three of our variants of sparse sets: sparse sets
à la Briggs and Torczon with and without limited capacity and sparse sets as
domains. We also implemented this algorithm using the OCaml standard library
module Set and an implementation of sets as hash tables6.

This algorithm performs many insertions, deletions, membership tests and a
final call to the operation that computes the cardinality of the sparse set that,
at the end, contains the prime numbers up to P , the parameter of the algorithm.
In our experimentation whose results are shown on Fig. 11, P varies from one
hundred to one million. On the x-axis are the execution times in seconds and on
the y-axis the values of P .

On this example sparse sets in their three versions outperform the two set
other representations but it is a bit unfair since we are comparing a mutable rep-
resentation with functional ones. Regarding the three variants, they are equiva-
lent, maintaining the links for removed elements do not impact significantly the
execution time.

5 https://www.codeproject.com/Articles/859324/
Fast-Implementations-of-Sparse-Sets-in-Cplusplus

6 https://github.com/backtracking/hashset

https://www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus
https://www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus
https://github.com/backtracking/hashset


type tsparse = { n : int;
mutable dense: array int;
mutable sparse: array int;
mutable sizeD: int;
mutable ghost setD: fset int;
mutable ghost states: array (option (fset int));
}

invariant {
(*Inv1 *) dom_ran dense n && dom_ran sparse n &&
(*Inv2 *) 0 <= sizeD <= n &&
(*Inv3’ *) (forall i:int. 0 <= i < sizeD && 0<=v<n->

(dense[i]=v <-> sparse[v]=i))
(*Inv4 *) setD ⊆ (interval 0 n) &&.
(*Inv5’ *) (forall x: int. 0<= x < n ->

(x ∈ setD <-> sparse[x] < sizeD)) &&
(*Inv6 *) states.length = n+1 &&
(*Inv7 *) states[sizeD] = Some setD &&
(*Inv8 *) (forall i. 0 <= i < sizeD -> states[i] = None) &&
(*Inv9 *) (forall i, s. 0<=i<=n -> states[i] = Some s ->

(s ⊆ (interval 0 n) && sizeD <= i && setD ⊆ s)) &&
(*Inv10 *) (forall i, s. 0<=i<=n -> states[i] = Some s ->

(forall x. 0<=x<n -> (sparse[x]<i <-> mem x s)))

let undo_sparse (a : tsparse) (p : int) : unit
...
=
let ghost v = a.states[p] in
a.setD <- from_option v ;
fill a.states 0 p None;
a.sizeD <- p

let remove_sparse (v : int) (a : tsparse)
...
=
swap_two_arrays a.dense a.sparse a.n a.sparse[v] (a.sizeD - 1);
a.sizeD <- a.sizeD - 1;
a.setD <- remove v a.setD;
a.states[a.sizeD] <- Some a.setD

let add_sparse (v : int) (a : tsparse)
...
=
swap_two_arrays a.dense a.sparse a.n a.sparse[v] a.sizeD;
a.sizeD <- a.sizeD + 1;
a.setD <- add v a.setD;
fill a.states 0 (a.n + 1) None ;
a.states[a.sizeD] <- Some a.setD;

Fig. 9: Concrete Implementation of Domains



Prover nb.proofs min.time(s) max.time(s) av.time(s)

Alt-Ergo 2.5.1 37 0.01 1.09 0.29
CVC4 1.6 148 0.05 0.93 0.12

Fig. 10: Statistics per prover: number of proofs, time (minimum/maximum/av-
erage) in seconds

Our extracted code of sparse sets as domains has been used with a simple
sudoku solver originally written in OCaml by Filliâtre7. That example intensively
uses backtracking and thus the undo operation. It has been evaluated on a large
number of sudoku puzzles.
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Fig. 11: Comparison of execution times on a naive implementation of Erathos-
thenes Sieve algorithm

7 Conclusion

In this paper we presented the formal Why3 development for sparse sets and
for sparse sets as domains used in constraint solvers. The former refines and

7 https://github.com/backtracking/ocaml-bazaar/blob/main/sudoku.
ml

https://github.com/backtracking/ocaml-bazaar/blob/main/sudoku.ml
https://github.com/backtracking/ocaml-bazaar/blob/main/sudoku.ml


extends a partial solution for a more general data structure, sparse arrays, done
by Filliâtre and Paskevich some years ago. The latter is a variant of the former,
but as far as we know it is the first formalization of this backtrackable data
structure that allows the representation of domains of integer variables. We have
extracted efficient OCaml code from these formally verified models, which we
have experimented on simple test cases and the Erathosthenes Sieve algorithm.
One perspective of this work is the extraction of C code.

The technique used to be able to specify and prove the undo operation has
implications for the whole formal development. It allows to use WhyML and the
deductive verification engine of Why3 to prove a property that involves more
than a pre- and a post- state, and is close to a dynamic or temporal property.

In the case of very sparse sets or domains, using an array to implement the
sparse structure is not optimal in terms of memory space. The data structure
could be made more interesting by using another fast access structure, e.g. a
hashmap (idea also suggested in [15]). So we could also suggest extending our
current work to use such an alternative. It would be more interesting to make this
sparse structure a generic parameter of the formalization in order to choose
the right implementation à la carte.

As future work, we would also like to integrate sparse sets as domains in a
finite domain constraint solver, e.g. in CoqBinFD, a formally verified constraint
solver formally verified in Coq [6] or in FaCile, an OCaml constraint library [5].
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