
PolySAT: Word-level Bit-vector Reasoning in Z3

Jakob Rath1 , Clemens Eisenhofer1 , Daniela Kaufmann1 ,
Nikolaj Bjørner2 , and Laura Kovács1

1 TU Wien, Vienna, Austria, first.last@tuwien.ac.at
2 Microsoft Research, Redmond, USA, nbjorner@microsoft.com

Abstract. PolySAT is a word-level decision procedure supporting bit-
precise SMT reasoning over polynomial arithmetic with large bit-vector
operations. Addressing challenges of verified software, PolySAT inte-
grates the theoretical development of SMT-based calculi with a proof of
concept implementation and empirical evaluation. The PolySAT calcu-
lus extends conflict-driven clause learning modulo theories with two key
components: (i) a bit-vector plugin to the equality graph, and (ii) a theory
solver for bit-vector arithmetic with non-linear polynomials. PolySAT
implements dedicated procedures to extract bit-vector intervals from poly-
nomial inequalities. For conflict analysis and resolution, PolySAT comes
with on-demand lemma generation over non-linear bit-vector arithmetic.
PolySAT is integrated into the SMT solver Z3 and has applications
in model checking and smart contract verification where bit-blasting
techniques on multipliers/divisions do not scale.

Keywords: SMT Solving · Bit-vector Theory · Word-level Reasoning ·
Software Verification

1 Introduction

Bit-vector reasoning plays a central role in applications of system verification,
enabling for example efficient bounded model checking [11], bit-precise memory
handling [22], or proving safety of decentralized financial transactions [1]. Al-
though one may argue that, because bit-vectors are bounded, bit-vector reasoning
is simpler than proving arithmetic properties over the integers or reals, showing
(un)satisfiability of bit-vector problems is inherently expensive due to complex
arithmetic operations over large bit-widths [19].

Related works. State-of-the-art satisfiability modulo theories (SMT) solvers handle
bit-vector operations by bit-blasting [20], i.e., translating bit-vector formulas into
propositional ones that can be solved by ordinary propositional satisfiability (SAT)
solvers. While the core idea of translating bit-vector operations to SAT formulas
is quite natural, several variants of such translations arose. Some methods apply
heavy preprocessing before bit-blasting, see STP [16], whereas others use over-
and under-approximations to simplify solving, such as Boolector [26] and
uclid [8]. Alternatively, other approaches bit-blast only relevant parts of the
input, as developed in MathSAT [10] and cvc5 [2, 18].

http://orcid.org/0000-0003-0346-6749
http://orcid.org/0000-0003-0339-1580
http://orcid.org/0000-0002-5645-0292
http://orcid.org/0000-0002-1695-2810
http://orcid.org/0000-0002-8299-2714

2 Rath et al.

Yet, the bit-blasting strategy performs poorly when multiplications are in-
volved. As a result, stochastic local search, as in Bitwuzla [25] or Z3 [14], and
int-blasting, as in cvc5 [31], have been developed. Local search works very well
for satisfiable instances, but in general does not terminate for unsatisfiable (unsat)
problems. On the contrary, int-blasting tends to work better for unsat formulas.

PolySAT – Our contribution. In this paper, we propose PolySAT, a word-level
reasoning procedure integrated into SMT solving as a theory solver. PolySAT is
based on conflict-driven clause learning modulo theories (CDCL(T)), providing
thus an alternative to bit-blasting.

While our work builds on previous research on bit-vector slicing [7], forbidden
intervals [17], and fixing bits [30], we extend these efforts as follows. We generalize
forbidden intervals to non-unit coefficients (Section 5), while in [17] forbidden
intervals are extracted only from constraints with unit coefficients. We further
introduce theory lemmas to partially handle non-linear conflicts (Section 6),
wheras in [17] such conflicts are deferred to bit-blasting. Finally, PolySAT uses
intervals to track viable values and detect conflicts, whereas in [17], forbidden
intervals are used only to construct a lemma after a conflict has been detected,
and in [30], viable values are tracked by a combination of fixed bits and a single
interval consisting of a lower and upper bound. We integrate bit-vector slicing
from [7] and [17] as a plugin into the main e-graph of the SMT solver (Section 3.1).

In our setting, we consider bit-vectors as elements of the ring Z/2wZ. Infor-
mally, arithmetical operations on bit-vectors can be seen as the respective integer
operations, where the result is evaluated “mod 2w”. Yet, due to modulo/bounded
arithmetic, many properties of the integers (such as, there is no maximal element
and no zero-divisors) do not hold over bit-vectors. Nevertheless, with PolySAT
we support bit-vector arithmetic without bit-blasting.

PolySAT – Illustrative example. We illustrate the benefits of PolySAT using
the next example.

Example 1. Consider the bit-vector constraints with large bit-width w:

xy + y >u y + 3

6 = 2y + z

1 = 3x+ 6yz + 3z2

0 = (2y + 1) & x

where “&” denotes the bit-wise and operation and >u refers to unsigned com-
parison. PolySAT proves this set of bit-vector constraints to be unsat, without
using bit-blasting as follows.

We initially guess the assignment x = 0, simplifying the first constraint to
y >u y + 3. We pick the assignment y = 2w − 2 which is feasible w.r.t. the
inequality. Hence, the constraint 6 = 2y + z simplifies to z = 10, which conflicts
with the constraint 1 = 3x+ 6yz + 3z2. We backtrack, apply variable elimination
upon y on the two equality constraints, and learn the new equation 3x+ 18z = 1.
From the bit-wise &-constraint, we derive that x is even, as 2y + 1 is odd. This
conflicts with the learned equation, as the learned equation 3x+ 18z = 1 implies
that x is odd. Hence, PolySAT concludes that the given constraints are unsat.

PolySAT: Word-level Bit-vector Reasoning in Z3 3

PolySAT – Main improvements. With PolySAT, we bring the following main
improvements to word-level reasoning over bit-vectors.
– We adjust the concept of forbidden intervals [17] to track viable values in

PolySAT (Section 4);
– We extract bit-vectors intervals from polynomial (non-linear) inequalities

(Section 5);
– We introduce lemmas on-demand for detecting and resolving non-linear

conflicts in PolySAT (Section 6).
– We implement PolySAT directly in the SMT solver Z3 [24] and evaluate

our work on challenging examples (Section 7).
Paper outline. We discuss required preliminaries in Section 2 and provide an
overview of PolySAT in Section 3. We describe our main methodological con-
tributions in Sections 4–6 and present our experimental evaluation in Section 7.
Section 8 concludes our work.

2 Preliminaries

For a given number of bits w > 0, we consider bit-vectors of size w as elements of
the ring Z/2wZ (algebraic representation), or equivalently as strings of length w
over {0, 1} (binary representation). Throughout the paper, we write w for the
size of related bit-vectors, when it is clear from the context. In other cases, we
denote the size of x by |x| explicitly.

For conversion from bit-vectors to integers, unless explicitly stated otherwise,
we default to the unsigned interpretation of bit-vectors, i.e., choose the represen-
tatives {0, 1, . . . , 2w − 1} for elements of Z/2wZ. Negative constants such as −1
stand for their equivalent 2w − 1.

We write x ≤u y for unsigned comparison of bit-vectors, and use x ≤s y
to denote signed comparison. For simplicity of notation, we use “=” for both
object-level equality and meta-level equality.

The basic building blocks of PolySAT constraints are polynomials, i.e.,
multiplications and additions of bit-vector variables and constants. We emphasize
bit-vector multiplication by writing “·” explicitly.

We write x[i] for the i-th bit of the bit-vector x, where x[0] denotes the least
significant bit. Let x++ y denote the concatenation of x and y.

We write x[h:l], with 0 ≤ l ≤ h < w, for the sub-slice ranging from bit h to bit l
inclusively, i.e., x[h:l] = x[h] ++ x[h− 1] ++ · · ·++ x[l]. We call the sub-slices x[i:0]
the prefixes of x.

We use half-open wrapping intervals over the domain Z/2wZ. That is, for l > h
we define [l;h[:= [0;h[∪ [l; 2w[. Then, t ∈ [l;h[is equivalent to the bit-vector
inequality t− l <u h− l.

3 PolySAT in a Nutshell

PolySAT serves as a decision procedure for bit-vector constraints and is de-
veloped as a theory solver within the SMT solver Z3 [24]. An overview of the

4 Rath et al.

Z3

PolySAT
e-graph plugin

PolySAT
theory
solver

Other Theory Solvers

Z3
C

or
e

Input

sat or
unsat

• Bit-vector slicing
• Fixed values

Search
• Trail Γ
• Bit-vector constraints

Viable Values
• Set of intervals per variable x

Conflict Resolution
• Saturation
• Incremental Linearization
• Bit-Blasting

Fig. 1: PolySAT Integration

p ≤u q unsigned inequality
Ω∗(p, q) multiplicative overflow
x = p& q bit-wise and
x = p | q bit-wise or
x = p << q left shift
x = p >> q logical right shift
x = p >>a q arithmetic right shift

Fig. 2: Primitive Constraints

p <u q ⇝ ¬(q ≤u p)
p ≤s q ⇝ p+ 2w−1 ≤u q + 2w−1

p = q ⇝ p− q ≤u 0
Ω+(p, q) ⇝ p+ q <u p
p[i] ⇝ 2w−1 ≤u 2

w−i−1p
p− q ⇝ p+ (2w − 1)q
∼p ⇝ −p− 1

Fig. 3: Derived Constraints

PolySAT architecture is given in Figure 1, with further details on key ingredients
in Sections 4–6.

In a nutshell, PolySAT consists of two inter-connected components that
interact for theory solving in an SMT setting:
1. A bit-vector plugin to the equality graph, in short e-graph [12,29]. This plugin

handles structural constraints that involve multiple bit-widths (concatenation,
extraction) and determines canonical sub-slices of bit-vectors. The PolySAT
e-graph plugin also propagates assigned values across bit-vector slices.

2. A theory solver, which handles the remaining constraints by translating them
into polynomial constraints (Figure 2) and builds on information from the
e-graph plugin to search for a satisfiable assignment (Sections 4–6).
From its e-graph, PolySAT receives Boolean assignments to bit-vector con-

straints, and equality propagations between bit-vector terms. In return, the theory
solver of PolySAT produces a satisfying assignment, or a conflicting subset of
the received constraints. We next discuss these two components, and then focus
on the theory solving aspects of PolySAT in Sections 4–6.

3.1 E-graph Plugin

In SMT solving, an e-graph [12,29] is typically shared between theory solvers. The
primary purpose of the e-graph is to infer equalities that follow from congruence
reasoning. For PolySAT, the e-graph is extended with theory reasoning for
bit-vectors. Theory reasoning is dispatched when the e-graph merges two terms
of bit-vector sort. PolySAT determines of bits of variables that are fixed by
certain types of constraints (“fixed bits”) and performs constant propagation
over bit-vector extraction and concatenation. Furthermore, the PolySAT e-

PolySAT: Word-level Bit-vector Reasoning in Z3 5

graph establishes equalities between bit-vector ranges. For example, it infers that
x[5:4] = x[1:0] from the equation x[5:2] = x[3:0].

We note that congruence reasoning for bit-vectors was also considered in [6,
7, 23]. Moreover, e-graphs are also used for constant propagation in [17]. The
PolySAT integration of theory plugins to the e-graph structure is generic and
not specific to bit-vectors.

3.2 Theory Solver

The propositional search is driven by the CDCL(T) core of the SMT solver [4,27].
PolySAT receives Boolean assignments to bit-vector constraints and equality
propagations between bit-vector terms. Both of them are translated into primitive
constraints (cf. Figure 2) and tracked by the trail Γ . PolySAT maintains the
invariant that each element of Γ is justified by previous elements, and that each
constraint and variable is assigned at most once in Γ .

Value search in PolySAT assigns viable values (see Section 4) to bit-vector
variables, which are communicated back to the SMT solver core as variable
assignment constraints.

Constraints. Overall, PolySAT fully supports the standardized bit-vector logic
of SMT-LIB [3]. Extraction and concatenation are handled by PolySAT’s e-
graph plugin, while other bit-vector constraints are passed to its theory solver.
Figure 2 depicts the primitive constraints, where p, q are bit-vector polynomials
and x is a bit-vector variable. Other constraints are either internally reduced to
primitive constraints as shown in Figure 3, or axiomatized upfront.

For example, to internalize the (unsigned) division x/y, PolySAT introduces
fresh variables q := x/y and r := x%y for the quotient and remainder, respectively.
The main axiom is x = qy + r, but for correctness in bit-vector logic, four more
axioms are required:

¬Ω∗(q, y) y ̸= 0 → r <u y

¬Ω+(qy, r) y = 0 → q = −1

where ¬Ω+(qy, r) means that the addition qy + r does not overflow, which can
be implemented, e.g., as the constraint qy ≤u −r − 1.

Constraints of the form x = n, where x is a variable and n is a bit-vector
constant, are called variable assignments. Bit-vector terms p and constraints c
can be evaluated w.r.t. the current trail Γ , that is, we substitute the variable
assignments in Γ into p and c, respectively, and simplify. As a shorthand, we
write p̂ for the evaluation of p under the current trail.

PolySAT uses rewriting to simplify different syntactic forms of equivalent
constraints. In particular, we normalize several forms of equations that may
appear in modular arithmetic. For instance, the constraints p ≤u 0, p <u 1, and
2w − 1 ≤u p− 1, are all normalized to p = 0.

6 Rath et al.

Constraint Solving. The PolySAT theory solver uses a waterfall model of
refinements to generate lemmas on demand, using the following steps:
1. Propagation: Value propagation is triggered when a variable is assigned a

value (Section 4.1).
2. Viable Interval Conflict : If propagation tightens the feasible intervals of a

variable to the empty set, the solver yields an interval conflict (Section 4.3).
3. Case Split on Viable Candidates: If no further propagation is possible, and

there are no interval conflicts, the solver picks a value for the next unassigned
variable, if any. It produces a literal x = n for the CDCL solver to case
split on, with a preference to the phase x = n over x ̸= n. The constant n
is chosen to be outside the ranges of infeasible intervals stored for x so far
(Section 4.2).

4. Saturation Lemmas: Saturation lemmas let us propagate consequences from
non-linear constraints (Section 6.1).

5. Incremental Linearization: Our solver includes incremental linearization rules
for the cases where variables are 0, 1, −1, or powers of two (Section 6.2).

6. Bit-blasting : As a final resort, PolySAT admits bit-blasting rules (Sec-
tion 6.3).
The first three steps above (steps 1, 2, 3) operate on linear constraints, or

rather, a linear abstraction of the original constraints, where non-linear monomials
are treated as variables themselves. If no conflicts arise from the linear abstraction,
then any conflicting non-linear constraints are handled by the latter stages (steps 4,
5, 6 above).

A conflict at any stage will cause PolySAT to return a conflict lemma to
the SMT solver core, which will then backtrack and continue with search. When
control is passed to PolySAT the next time, theory solving in PolySAT will
begin again in the above step 1 of constraint solving.

4 Tracking Viable Values

In the following, we discuss the key ingredients of the theory solving component
of PolySAT. A crucial part of the PolySAT theory solver tracks for each
bit-vector variable x an over-approximation of the set of feasible values under the
current trail Γ , which we call the viable values of x. Specifically, the set of viable
values is represented as a set of forbidden intervals, each of which excludes a
certain range of values of x, and is justified by constraints in the current trail Γ .

In PolySAT, we adapt forbidden intervals from [17] and use intervals for
propagating and querying viable values of variables (Sections 4.1–4.2), and resolv-
ing respective conflicts (Section 4.3). Our approach extends [17] by computing
intervals when the coefficient of x is not a power of two (Section 5.1), or when
the coefficients are different on both sides of an inequality (Section 5.2).

4.1 Value Propagation

PolySAT extracts forbidden intervals from inequalities and overflow constraints c
that are linear in x under the current trail Γ . Formally, we determine an inter-

PolySAT: Word-level Bit-vector Reasoning in Z3 7

Algorithm 1: PolySAT Viable Value Query
Input : Set of forbidden intervals I, set C of constraints
Output :Viable value x0, or a conflict

1 x0 ← xprev ▷ Start at previous viable value
2 J ← ⟨⟩ ▷ Justification (sequence of visited intervals)
3 loop
4 while ∃I ∈ I such that x0 ∈ I do
5 Choose such an I ∈ I with smallest bit-width
6 J ← ⟨J ; I⟩
7 x0 ← forward(x0, I)
8 if isConflict(J) then return Conflict J
9 if x0 does not violate any c ∈ C then return x0

10 I ← I ∪ {computeInterval(C, x0)}

val [l;u[and side conditions c1, . . . , cn that hold under Γ such that

c ∧ c1 ∧ · · · ∧ cn =⇒ x ̸∈ [l;u[.

Intervals are ordered by their starting points, and we drop intervals that are fully
contained in other intervals. Section 5 explains how intervals are obtained from
constraints.

Value propagation in PolySAT is triggered when a variable is assigned a
value, or in other words, the solver is presented with a literal x = n, where n is
a value. Propagation is limited to linear occurrences of variables. For example,
if x is assigned 2, then from x + y ≥u 10, the non viable intervals for y are
updated to y ̸∈ [−2; 8[. On the other hand, for xz + y ≥u 10, where x occurs in a
non-linear term, there is no propagation. Non-linear propagation in PolySAT is
currently side-stepped because we noticed that it produced very weak lemmas
from viable interval conflicts. Non-linear conflicts are therefore handled separately,
see Section 6.

4.2 Viable Value Query

To find a viable value for variable x, we collect the forbidden intervals I over
the prefixes x[k:0] of x for 0 ≤ k < w. In this context, iff an interval I ∈ I is an
interval for x[k:0], we say I has bit-width k+1. In addition, we consider intervals
for variables that are equivalent to a prefix of x, as determined by the current
state of the e-graph.

In addition to forbidden intervals, we keep track of the set C of constraints
that are linear in x. We then invoke Algorithm 1 to either find a value for x or
detect a conflict. We resolve limitations of [17] by using intervals to track viable
values and detect conflicts in Algorithm 1 as follows.

Algorithm 1 starts out with the previous viable value xprev of x, initially
set to 0. Then, in the loop of Algorithm 1, we check whether any of the known
intervals I contain the current candidate value x0 of x. If that is not the case,

8 Rath et al.

then the current value x0 is compatible with the intervals in I. We additionally
test x0 for admissibility against the set C of constraints (line 9 of Algorithm 1).
If none of these constraints are violated, the candidate value x0 is returned as
viable value for x. Otherwise (line 10 of Algorithm 1), computeInterval(C, x0)
extracts a new interval that covers x0 (cf. Section 5) and the search for a viable
value of x continues. If, on the other hand, the current value x0 of x is contained
in some forbidden interval, we choose an interval I of minimal bit-width among
these (line 5 of Algorithm 1) and record it in the list J of justifications (line 6 of
Algorithm 1).

The candidate value x0 of x is updated to forward(x0, I), the first value
after x0 that is not covered by I (line 7 of Algorithm 1). If a conflict is detected
(line 8 of Algorithm 1), the justifications J are returned for further processing
(see Section 4.3).

4.3 Interval Conflict

We detect conflicts by examining the list of justifications J after appending a new
interval I to J . The condition isConflict(J) in Algorithm 1 is true iff the latest
interval I has already been visited previously, and no interval of larger bit-width
has occurred in between. Let I1, . . . , In+1 denote this subsequence of intervals,
where I1 = In+1 = I, and let Ii = [li;hi[. To block the current assignment to x,
PolySAT creates a conflict lemma from I1, . . . , In+1 and reports it to its SMT
core. For simplicity, we only explain here the case where all intervals have same
bit-width.

The PolySAT conflict lemma is used to capture the following fact: the
union of I1, . . . , In covers the full domain Z/wZ, and the intervals have been
chosen such that each upper bound hi in contained in the next interval Ii+1.
In other words, as long as hi ∈ Ii+1 holds, for all i, and the intervals are valid
for x, there can be no feasible value for x in PolySAT. While the PolySAT
conflict lemma is similar to the one of [17], we note that [17] succinctly represents
constraints hi ∈ Ii+1 when multiple bit-widths are involved; this is not the case
with PolySAT as we avoid using extract-expressions.

Since the constraints hi ∈ Ii+1 in PolySAT do not contain x itself, they are
useful for formulating a conflict lemma. Let Ci denote the set consisting of the
constraint and side conditions of Ii. Then, the PolySAT conflict lemma is

n∧
i=1

Ci ∧
n∧

i=1

hi ∈ Ii+1 =⇒ ⊥.

To illustrate the idea of conflict lemma generation in PolySAT, consider
three intervals [l1;h1[, [l2;h2[, [l3;h3[whose concrete evaluation under the current
trail Γ covers the full domain by forming the following configuration:

0 2w − 1ℓ̂1 ĥ1ℓ̂2 ĥ2

ℓ̂3ĥ3

ℓ̂2

ℓ̂3

PolySAT: Word-level Bit-vector Reasoning in Z3 9

Assuming the three intervals are justified by constraints C1, C2, C3, respectively,
the PolySAT conflict lemma is∧

C ∧ h1 ∈ [l2;h2[∧ h2 ∈ [l3;h3[∧ h3 ∈ [l1;h1[=⇒ ⊥,

where C := C1 ∪ C2 ∪ C3.

5 Computing Intervals

We now describe how forbidden intervals are extracted from a constraint c ∈ C
that is linear in the variable x under consideration. Intervals may be computed
on demand, relative to a given candidate value (sample point) x0 of x: the goal
is then to find a maximal interval around x0 of x-values that are excluded by c.
In practice, we note the intervals are often not strictly maximal, but as large as
reasonably possible to compute.

5.1 Linear Inequality with Equal Coefficients

Given the inequality constraint px+ q ≤u rx+ s that is linear in x. In the cases
where either p or r evaluate to 0 or both to the same value a, the inequality
constraint is equivalent to an interval constraint [17], according to the following
table, and subject to side conditions p = p̂ and r = r̂:

Constraint under Γ Forbidden Interval Condition
ax+ q̂ ≤u ŝ ax ̸∈ [s− q + 1;−q[s ̸= −1
q̂ ≤u ax+ ŝ ax ̸∈ [−s; q − s[q ̸= 0
ax+ q̂ ≤u ax+ ŝ ax ̸∈ [−s;−q[q ̸= s

Assume we have ax ∈ [l;h[. Yet, we want to extract an interval on x, rather than
on ax.

Case a = ±1 : The case a = 1 trivially leads to such an interval. In the case
a = −1 (i.e., 2w − 1), the transformation −x ∈ [l;h[⇔ x ∈ [1− h; 1− l[is
applied.

Case a = α2 k (reducing the bit-width): Consider the case where a is divisible
by 2k for some k > 0. Due to the factor 2k, the upper k bits of x do not influence
the value of the constraint. In this case, we consider an interval for the prefix
x[w − k − 1:0] of x:

α2kx ̸∈ [l;h[⇐⇒

{
αx[w − k − 1:0] ̸∈ [l′;h′[if l′ ̸= h′

0 ̸∈ [l;h[otherwise

where β′ := ⌈ β
2k
⌉mod2w−k for β ∈ {l, h}.

10 Rath et al.

Other values of a: For other values of a, in general, multiple disjoint intervals
exist. We extract intervals around a sample point x0 on demand, i.e., given
concrete values a, x0, l, h ∈ Z/2wZ such that ax0 ∈ [l;h[, the task is to compute
the maximal x-interval [xl;xh[such that ax ∈ [l;h[for all x ∈ [xl;xh[. To
compute xl and xh, we move the problem into the integers Z and work with
non-wrapping intervals. Operations until the end of this subsection are therefore
to be understood as operations in Z.

Let w be a fixed bit-width and let m := 2w. Assume values a, x0, l, h ∈ Z
are given such that 1 ≤ a < m, −m < l ≤ h < m, and ax0 modm ∈ [l;h].
Furthermore, the length of the interval should be less than m, i.e., h− l+ 1 < m
(otherwise the computation is unnecessary because the corresponding modular
interval covers the whole domain). The goal is to find the minimal xl and the
maximal xh such that axmodm ∈ [l;h] for all x ∈ [xl;xh].

Let k0 ∈ Z such that l ≤ ax0 + k0m ≤ h. To simplify notation, define
⟨x⟩ := x+ k0m. The initial configuration is illustrated by the following diagram:

0 m 2m

l h⟨ax0⟩

Since we are ultimately interested in the modular interval [l;h]modm over
Z/mZ, we consider the set of all representatives of elements of that interval, i.e.,
the union of [l;h] + im for all i ∈ Z, as depicted in the following diagram.

0 m 2m

l h⟨ax0⟩

The underlying idea of our procedure is to look at each interval representative
[l;h] + im separately (intuitively, as a region where no overflow occurs) and take
advantage of periodicity after each overflow.

In the first step, we compute the minimal x′
l and the maximal x′

h such that
l ≤ ⟨ax⟩ ≤ h for all x ∈ [x′

l;x
′
h]. Intuitively, [x′

l;x
′
h] is the maximal x-interval

around x0 such that no overflow occurs among the corresponding multiples of a.

0 m 2m

l h⟨ax0⟩

⟨ax′
l⟩ ⟨ax′

h⟩
a

However, the interval [x′
l;x

′
h] is often far from optimal, causing repeated queries

over the same constraint in Alg. 1. In case of the upper bound, this means that
⟨a(x′

h+1)⟩ is contained in the next interval representative [l;h]+m. The following
diagram illustrates the multiples of a across several interval representatives.

PolySAT: Word-level Bit-vector Reasoning in Z3 11

0 m 2m

⟨ax0⟩

⟨a(x′
h + 1)⟩ ⟨ax′′

h⟩

d d+ α d+ 2α

a

The situation in the second interval [l;h] +m is very similar to the initial
setting. However, the multiples of a (depicted by red diamonds) have shifted by
some amount α relative to the interval.

In the example illustrated in the diagrams we have α < 0, i.e., with each
overflow, the multiples of a drift to the left (relative to the interval). With different
parameters, α = 0 (no drift) and α > 0 (drift to the right) are also possible.

For α < 0, we keep overflowing until the leftmost multiple of a drifts outside
the interval. For α > 0, similarly for the rightmost multiple of a (in this case,
the final considered interval will be irregular in the sense that it contains one
fewer multiple of a).

In case α = 0, the situation for each interval representative is exactly the same,
and we conclude no upper bound xh exists (which means the final x-interval over
Z/mZ will be the full domain).

We have described our method to compute the upper bound xh. The lower
bound xl can be computed analogously. In fact, PolySAT reduces the com-
putation of xl to the computation of xh by mirroring the initial configuration
and the result across 0. Let f denote the procedure for calculating xh, i.e.,
xh = f(x0, a, l, h,m). Then xl = −f(−x0, a,−h,−l,m).

Even though this method works well in practice, some limitations remain.
The interval extension ends as soon as one of the red diamonds is outside the
blue interval. This is by specification, but it does mean that this method is only
helpful when the gap between blue intervals (i.e., m− (h− l)) is less than the
distance between red diamonds (i.e., a).

5.2 Linear Inequality with Different Coefficients

Consider an inequality c of the form px+ q ≤u rx+ s with p̂ ̸= r̂. Here, we need
to find the largest x-interval around a sample point x0 where c is satisfied. The
corresponding problem is easily solved over infinite domains, such as rationals, by
computing the intersection point of the left- and right-hand side of the inequality.
The interval then extends from the intersection point towards infinity.

However, in modular arithmetic, the left-hand side and the right-hand side
of c do not represent continuous lines; instead, they wrap around at 2w. As such,
the solution is not necessarily a single interval; the desired intervals extend from
an intersection point to the next wraparound point. PolySAT computes and
returns the interval containing x0. This method works best when the coefficients p̂
and q̂ of x are near 0 or 2w. More details are given in Appendix A.

12 Rath et al.

5.3 Projecting Intervals to Sub-Slices

Since value assignments are propagated eagerly across bit-vector slices by the
e-graph component of PolySAT, in some cases, a bit-vector variable is assigned
to a value that contradicts an interval on a super-slice of the variable. Such
contradictions may also be caused by the e-graph, because it does not take into
account intervals when merging nodes.

Let x := y++ z s.t. |y| = u and |z| = v. Given the forbidden interval x ̸∈ [l;h[,
then 2vy + z ̸∈ [l;h[. We learn intervals for y and z via the following PolySAT
lemmas.

Lemma 1 (General Intervals). In case no fixed value is known for the other
sub-slice, it is possible to learn an interval as long as [l;h[is big enough.

len([l;h[) ≥ 2u =⇒ y ̸∈ [ly;hy[(1)

len([l;h[) > 2u+v − 2v =⇒ z ̸∈ [lz;hz[(2)

where ly := ⌈ l
2v ⌉mod2v, hy := ⌊ h

2v ⌋, lz := lmod2v, and hz := hmod2v.

Lemma 2 (Specific Intervals). If the other sub-slice has a fixed value, a larger
interval can be projected [17, Figure 1].

z = n ∧ ly ̸= hy =⇒ y ̸∈ [ly, hy[(3)
z = n ∧ ly = hy ∧ hy2

v + n ∈ [l;h[=⇒ ⊥ (4)
y = n ∧ lz ̸= hz =⇒ z ̸∈ [lz;hz[(5)
y = n ∧ lz = hz ∧ n2v ∈ [l;h[=⇒ ⊥ (6)

where (β ∈ {l, h})

βy :=
⌈ (β − n)mod 2u+v

2v

⌉
mod2u, βz :=

{
βmod2v if ⌊ β

2v ⌋ = n,

0 otherwise.

These projections are applied iteratively in PolySAT to derive intervals
for arbitrary sub-slices. At each step, a choice is made between Lemmas 1–2,
depending on whether a fixed value is available at the required decision level.

Example 2. We can use the above to find an interval I such that x = 0++y++ z∧
z[15:8] = 123 ∧ x ̸∈ [300007; 0[implies y ̸∈ I, where |x| = 64 and |y| = |z| = 16.
– First, apply (5) to obtain y ++ z ̸∈ [300007; 0[.
– Next, with (1) we obtain y ++ z[15:8] ̸∈ [1253; 0[.
– Finally, with (3) we obtain y ̸∈ [5; 0[.

6 Non-Linear Conflicts

Non-linear conflicts are handled in PolySAT by saturation, incremental lin-
earization, and bit-blasting. Saturation, incremental linearization and bit-blasting
are postponed until all variables are assigned values and there are no conflicts
detected by propagating bounds on linear constraints.

PolySAT: Word-level Bit-vector Reasoning in Z3 13

6.1 Saturation Lemmas

Saturation lemmas propagate consequences from non-linear constraints. The
consequences are considered “simpler”, when they are linear or if they contain
fewer variables. Saturation lemmas, given in Lemmas 3–6, are added by PolySAT
if their non-linear constraints are in the assertion trail and they evaluate to false
under the current assignment in Γ .

Lemma 3 (Saturation Modulo Multiplication Inequalities). We give an
excerpt of possible saturation rules. An extended list can be found in Appendix B.

px <u qx =⇒ Ω∗(p, x) ∨ p <u q
px <u qx =⇒ Ω∗(−q, x) ∨ p <u q
px <u qx =⇒ Ω∗(q,−x) ∨ p >u q ∨ p = 0
px <u qx =⇒ Ω∗(−p,−x) ∨ p >u q ∨ p = 0
px ≤u qx =⇒ Ω∗(p, x) ∨ p ≤u q ∨ x = 0
px+ s ≤u q =⇒ Ω∗(p, x) ∨ Ω+(px, s) ∨ pr ≤u q ∨ x <u r
p ≤u x ∧ qx ≤u r =⇒ Ω∗(q, x) ∨ pq ≤u r
p ≤u x ∧ qx <u r =⇒ Ω∗(q, x) ∨ pq <u r
p ≤u qx ∧ x ≤u r =⇒ Ω∗(q, r) ∨ p ≤u qr
p <u qx ∧ x ≤u r =⇒ Ω∗(q, r) ∨ p <u qr

Note that these rules do not require x ̸∈ p, q, r, s, so they can be applied even when
the degree of x is larger than 1.

Obtaining Saturation Lemmas. Since bit-vector arithmetic does not match the
intuition of standard arithmetic, it can take a lot of effort to come up with
saturation lemmas manually. We have therefore employed some automation to
discover the rules given in Lemma 3. We start with the constraint on the LHS
of the rule (e.g., px <u qx) and generate a set of constraints that we want to
allow in the RHS. We then add the constraints for a small fixed bit-width to
Z3 and employ the MARCO algorithm [21] to find the minimal unsatisfiable
subsets (MUS). Each MUS corresponds to a valid lemma; however, to be useful
as saturation lemmas, we filter the candidates such that the RHS is simpler in
some sense. Finally, we verify manually that the lemmas generalize to arbitrary
bit-widths.

Next, we can connect overflow constraints with multiplications or decompose
them to linear inequalities.

Lemma 4 (Overflow Saturation).

¬Ω∗(p, q) ∧ q ̸= 0 =⇒ p ≤u p · q
0̄p · 0̄q ≥u 2

w =⇒ Ω∗(p, q)
Ω∗(p, q) ∧ ¬Ω∗(r, s) =⇒ p >u r ∨ q >u s

Ω∗(p, q) ∧ p ≥u q =⇒ p ≥u ⌈
√
2w⌉

¬Ω∗(p, q) ∧ p ≥u q =⇒ q <u ⌊
√
2w⌋

where 0̄p and 0̄q stands for a zero-extension with at least one bit of p and q,
respectively. Note that here w = |p| = |q| > 1, since for w = 1 multiplication
overflow is impossible.

14 Rath et al.

Variables can in some cases be resolved, producing constraints that are free
of resolved variables.

Lemma 5 (Saturation Modulo Equalities).

ax+ b = 0 ∧ cx+ d = 0 =⇒ ad− bc = 0
ax+ b = 0 ∧ c[x] =⇒ c[−b · a−1] if a is odd

where c[x] may be any constraint containing x. Note that the multiplicative
inverse a−1 of a in Z/2wZ exists if and only if a is odd.

Finally, let us define the parity of a bit-vector x as the largest number i ∈
{0, . . . , w} such that 2i divides x. The parity of a bit-vector can be constrained
by a linear inequality, where parity(p) ≥ i ⇐⇒ p2w−i = 0 for 0 < i ≤ w.

Lemma 6 (Parity Saturation). Parity inequalities can be used to constrain
values of multipliers.

p · q = 0 =⇒ parity(p) + parity(q) ≥ w
p · q = 1 =⇒ parity(p) = 0
p · q = q =⇒ parity(p− 1) + parity(q) ≥ w
parity(p · q) = min(w,parity(p) + parity(q))

6.2 Incremental Linearization

PolySAT includes incremental linearization rules for the cases where variables
are 0, 1, −1, or powers of two. Note that our vocabulary of incremental lineariza-
tion lemmas is considerably smaller than what is used for non-linear integer
arithmetic [9], but it is also materially different as it operates over modular
semantics of bit-vector operations. Notably, we do not include here inferences
for deriving ordering constraints, such as a > b ∧ c > 0 =⇒ ac > bc, which
holds for integers, but not for bit-vectors. Note that Lemma 3 includes ordering
constraints, but only for the cases where relevant uses of multiplication do not
overflow.

Lemma 7 (Incremental Linearization).

p = 0 =⇒ p · q = 0
p = 1 =⇒ p · q = q
p = −1 =⇒ p · q = −q
p = 2k =⇒ p · q = 2kq (k = 1, . . . , w − 1)
p · q = 1 =⇒ p = 1 ∨Ω∗(p, q)
p · q = q =⇒ p = 1 ∨ q = 0 ∨Ω∗(p, q)

6.3 Bit-blasting Rules

As a final resort, PolySAT admits bit-blasting. A product x := p · q can be
equivalently represented as

∑
i 2

ip[i]q. The other primitive operations (bit-wise
and, bit-wise or, left shift, logical and arithmetic right shift) are unfolded using
blasting as follows.

PolySAT: Word-level Bit-vector Reasoning in Z3 15

Lemma 8 (x := p & q). Bit-wise and “&“ is handled using standard axioms,
that fall back to bit-blasting at each index i if the basic algebraic properties hold,
but x still does not evaluate to the bit-wise and of p, q.

⊤ =⇒ x ≤u p
p = 0 =⇒ x = 0
p = −1 =⇒ x = q
p = q =⇒ x = p
p[i] ∧ q[i] =⇒ x[i] for each 0 ≤ i < w
x[i] =⇒ p[i] for each 0 ≤ i < w

Note that we do not list symmetric rules, e.g., x ≤u q.

Bit-wise or is handled analogously. For shift operations, we split on the
value of the second argument. PolySAT also performs partial bit-blasting for
multiplication overflow predicates. Details may be found in Appendix B.

7 Experiments

We evaluated our PolySAT prototype3 against recent versions of several state-
of-the-art SMT solvers on the following four benchmark sets: the category QF_BV
from SMT-LIB [3] (release 2023, non-incremental); the BV2SMV benchmarks
featuring large bit-widths [15]; 14 benchmarks from smart contract verification
related to the Certora prover [1]; and a set of benchmarks from the Alive2
compiler verification project [22]. Note that the STP solver [16] does not support
the logic QF_UFBV used by some of the Certora benchmarks.

Our experiments were performed on a TU Wien cluster, where each compute
node contains two AMD Epyc 7502 processors, each of which has 32 CPU cores
running at 2.5GHz. Each compute node is equipped with 1008GiB of physical
memory that is split into eight memory nodes of 126 GiB each, with eight logical
CPUs assigned to each node. We used runexec from the benchmarking framework
BenchExec [5] to assign each benchmark process to a different CPU core and its
corresponding memory node. Further, we used GNU Parallel [28] to schedule
benchmark processes in parallel.

Our results are summarized in Table 1 and indicate that PolySAT is compa-
rable to the other word-level approaches on the BV2SMV benchmark set, however
in general, more work is needed. Concerning the Alive2 benchmarks that were
solved by Yices2-mcsat but not by PolySAT, we found that in all but three
cases Yices2-mcsat did not use any interval reasoning for conflicts/propagation;
rather, Yices2-mcsat relied mostly on a fallback to bit-blasting. As PolySAT
does not yet have such a fallback, this result suggests our bit-blasting rules
(Section 6.3) alone are not enough.
3 Available at https://github.com/Z3Prover/z3/tree/poly. This paper

refers to commit 16fb86b636047fd79ad5827f768b6f26d8812948. To select
PolySAT for bit-vector solving, add the following options: sat.smt=true
tactic.default_tactic=smt smt.bv.solver=1.

https://github.com/Z3Prover/z3/tree/poly

16 Rath et al.

SMT-LIB BV2SMV Smart
Contracts Alive2

sat unsat sat unsat sat unsat sat unsat

B
it

-b
la

st
in

g Bitwuzla [25] 17 745 27 203 32 115 1 3 39 3 954
cvc5 [2] 16 417 25 922 31 114 0 4 39 2 722
STP [16] 17 462 27 011 24 115 - - 39 2 893
Yices2 [13] 17 589 26 600 24 107 0 3 39 1 519
Z3 [24] 16 112 25 597 29 94 0 3 39 1 514

W
or

d-
lv

l cvc5-IntBlast [31] 11 251 24 376 32 64 1 9 5 1 047
Yices2-mcsat [17] 14 155 22 396 24 101 1 4 23 2 562
Z3-IntBlast 10 912 24 371 28 56 1 5 30 921
Z3-PolySAT 7 297 20 080 28 63 0 3 0 21
Total 46 191 192 14 12 951

Table 1: Number of problems solved within 60 s for several benchmark sets. The
upper five solvers are based on bit-blasting, while the lower four solvers use
word-level techniques.

Nevertheless, PolySAT complements Z3 with word-level bit-vector reasoning.
Our experimental analysis found that PolySAT solved 135 problems that Z3 did
not solve and 404 problems that Z3-IntBlast did not solve (40 of which neither
Z3 nor Z3-IntBlast solved). Further combinations of complementary approaches
of word-level reasoning with bit-blasting is a promising direction to explore.

8 Conclusion

We introduced PolySAT, a general purpose word-level bit-vector solver, to
overcome the scalability issue of bit-blasting over large bit-vectors. PolySAT
integrates into CDCL(T)-based SMT solving, generalizes interval-based reasoning,
and performs incremental linearization of constraints. PolySAT is implemented
in the SMT solver Z3 and complements bit-vector reasoning in Z3.

Acknowledgements. We thank Mooly Sagiv and Alexander Nutz for thorough
discussions on PolySAT applications. This work was partially supported by
the ERC Consolidator Grant ARTIST 101002685, the TU Wien Doctoral Col-
lege SecInt, the FWF SFB project SpyCoDe F8504, the FWF ESPRIT grant
10.55776/ESP666, and the Amazon Research Award 2023 QuAT.

References

1. Albert, E., Grossman, S., Rinetzky, N., Rodríguez-Núñez, C., Rubio, A., Sagiv,
M.: Taming Callbacks for Smart Contract Modularity. Proc. ACM Program. Lang.
4(OOPSLA), 1–30 (2020). https://doi.org/10.1145/3428277, https://doi.org/
10.1145/3428277

https://doi.org/10.1145/3428277
https://doi.org/10.1145/3428277
https://doi.org/10.1145/3428277
https://doi.org/10.1145/3428277

PolySAT: Word-level Bit-vector Reasoning in Z3 17

2. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M.,
Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A Versatile and Industrial-
Strength SMT Solver. In: Proc. of TACAS. pp. 415–442 (2022). https://doi.org/
10.1007/978-3-030-99524-9_24

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

4. Bayardo, Jr., R.J., Schrag, R.: Using CSP Look-Back Techniques to Solve Real-
World SAT Instances. In: Proc. of AAAI and IAAI. pp. 203–208 (1997)

5. Beyer, D., Löwe, S., Wendler, P.: Reliable Benchmarking: Requirements and Solu-
tions. J. on Software Tools for Technology Transfer 21(1), 1–29 (2017)

6. Bjørner, N.S., Pichora, M.C.: Deciding Fixed and Non-fixed Size Bit-vectors.
In: Proc. of TACAS. pp. 376–392 (1998). https://doi.org/10.1007/BFB0054184,
https://doi.org/10.1007/BFb0054184

7. Bruttomesso, R., Sharygina, N.: A Scalable Decision Procedure for Fixed-width
Bit-vectors. In: Proc. of ICCAD. pp. 13–20 (2009). https://doi.org/10.1145/
1687399.1687403, https://doi.org/10.1145/1687399.1687403

8. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.A.:
Deciding Bit-Vector Arithmetic with Abstraction. In: Proc. of TACAS. pp. 358–372
(2007). https://doi.org/10.1007/978-3-540-71209-1_28, https://doi.org/10.
1007/978-3-540-71209-1_28

9. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on
Solving Nonlinear Integer Arithmetic with Incremental Linearization. In: Proc.
of SAT. pp. 383–398 (2018). https://doi.org/10.1007/978-3-319-94144-8_23,
https://doi.org/10.1007/978-3-319-94144-8_23

10. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Proc. of TACAS. pp. 93–107 (2013). https://doi.org/10.1007/
978-3-642-36742-7_7

11. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Proc. of TACAS. pp. 168–176 (2004)

12. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a Theorem Prover for Program
Checking. J. ACM 52(3), 365–473 (2005). https://doi.org/10.1145/1066100.
1066102, https://doi.org/10.1145/1066100.1066102

13. Dutertre, B.: Yices 2.2. In: Proc. of CAV. pp. 737–744 (2014). https://doi.org/10.
1007/978-3-319-08867-9_49, https://doi.org/10.1007/978-3-319-08867-9_
49

14. Fröhlich, A., Biere, A., Wintersteiger, C.M., Hamadi, Y.: Stochastic Local Search
for Satisfiability Modulo Theories. In: Proc. of AAAI. pp. 1136–1143 (2015), http:
//www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9896

15. Fröhlich, A., Kovásznai, G., Biere, A.: Efficiently Solving Bit-Vector Problems
Using Model Checkers. In: Proc. of Workshop on SMT. pp. 6–15 (2013), https:
//fmv.jku.at/bv2smv/

16. Ganesh, V., Dill, D.L.: A Decision Procedure for Bit-Vectors and Arrays. In: Proc.
of CAV. pp. 519–531 (2007). https://doi.org/10.1007/978-3-540-73368-3_52,
https://doi.org/10.1007/978-3-540-73368-3_52

17. Graham-Lengrand, S., Jovanovic, D., Dutertre, B.: Solving Bitvectors with MC-
SAT: Explanations from Bits and Pieces. In: Proc. of IJCAR. pp. 103–121
(2020). https://doi.org/10.1007/978-3-030-51074-9_7, https://doi.org/10.
1007/978-3-030-51074-9_7

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/BFB0054184
https://doi.org/10.1007/BFB0054184
https://doi.org/10.1007/BFb0054184
https://doi.org/10.1145/1687399.1687403
https://doi.org/10.1145/1687399.1687403
https://doi.org/10.1145/1687399.1687403
https://doi.org/10.1145/1687399.1687403
https://doi.org/10.1145/1687399.1687403
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-540-71209-1_28
https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9896
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9896
https://fmv.jku.at/bv2smv/
https://fmv.jku.at/bv2smv/
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-030-51074-9_7

18 Rath et al.

18. Hadarean, L., Bansal, K., Jovanovic, D., Barrett, C.W., Tinelli, C.: A tale of two
solvers: Eager and lazy approaches to bit-vectors. In: Proc. of CAV. LNCS, vol. 8559,
pp. 680–695. Springer (2014). https://doi.org/10.1007/978-3-319-08867-9_45

19. Kovásznai, G., Fröhlich, A., Biere, A.: Complexity of Fixed-Size Bit-Vector Log-
ics. Theory Comput. Syst. 59(2), 323–376 (2016). https://doi.org/10.1007/
s00224-015-9653-1, https://doi.org/10.1007/s00224-015-9653-1

20. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View.
Springer (2008). https://doi.org/10.1007/978-3-540-74105-3

21. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enumer-
ation. Constraints An Int. J. 21(2), 223–250 (2016). https://doi.org/10.1007/
S10601-015-9183-0, https://doi.org/10.1007/s10601-015-9183-0

22. Lopes, N.P., Lee, J., Hur, C.K., Liu, Z., Regehr, J.: Alive2: Bounded Translation
Validation for LLVM. In: Proc. of PLDI. p. 65–79 (2021). https://doi.org/10.
1145/3453483.3454030, https://doi.org/10.1145/3453483.3454030

23. Möller, M.O., Rueß, H.: Solving Bit-Vector Equations. In: Proc. of FMCAD. pp.
36–48 (1998). https://doi.org/10.1007/3-540-49519-3_4, https://doi.org/
10.1007/3-540-49519-3_4

24. de Moura, L.M., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Proc. of TACAS.
pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3_24, https:
//doi.org/10.1007/978-3-540-78800-3_24

25. Niemetz, A., Preiner, M.: Bitwuzla. In: Proc. of CAV. pp. 3–17 (2023).
https://doi.org/10.1007/978-3-031-37703-7_1, https://doi.org/10.1007/
978-3-031-37703-7_1

26. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC and Boolec-
tor 3.0. In: Proc. of CAV. pp. 587–595 (2018). https://doi.org/10.1007/
978-3-319-96145-3_32

27. Silva, J.P.M., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999). https:
//doi.org/10.1109/12.769433

28. Tange, O.: GNU Parallel 20240122 (’Frederik X’) (Jan 2024). https://doi.org/10.
5281/zenodo.10558745, https://doi.org/10.5281/zenodo.10558745, GNU Par-
allel is a general parallelizer to run multiple serial command line programs in parallel
without changing them.

29. Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha, P.: egg: Fast
and Extensible Equality Saturation. Proc. ACM Program. Lang. 5(POPL), 1–29
(2021). https://doi.org/10.1145/3434304, https://doi.org/10.1145/3434304

30. Zeljic, A., Wintersteiger, C.M., Rümmer, P.: Deciding Bit-Vector Formulas
with mcSAT. In: Proc. of SAT. pp. 249–266 (2016). https://doi.org/10.1007/
978-3-319-40970-2_16, https://doi.org/10.1007/978-3-319-40970-2_16

31. Zohar, Y., Irfan, A., Mann, M., Niemetz, A., Nötzli, A., Preiner, M., Reynolds, A.,
Barrett, C., Tinelli, C.: Bit-precise Reasoning via Int-blasting. In: Proc. of VMCAI.
pp. 496–518 (2022). https://doi.org/10.1007/978-3-030-94583-1_24

https://doi.org/10.1007/978-3-319-08867-9_45
https://doi.org/10.1007/978-3-319-08867-9_45
https://doi.org/10.1007/s00224-015-9653-1
https://doi.org/10.1007/s00224-015-9653-1
https://doi.org/10.1007/s00224-015-9653-1
https://doi.org/10.1007/s00224-015-9653-1
https://doi.org/10.1007/s00224-015-9653-1
https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1007/S10601-015-9183-0
https://doi.org/10.1007/S10601-015-9183-0
https://doi.org/10.1007/S10601-015-9183-0
https://doi.org/10.1007/S10601-015-9183-0
https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1007/3-540-49519-3_4
https://doi.org/10.1007/3-540-49519-3_4
https://doi.org/10.1007/3-540-49519-3_4
https://doi.org/10.1007/3-540-49519-3_4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.5281/zenodo.10558745
https://doi.org/10.5281/zenodo.10558745
https://doi.org/10.5281/zenodo.10558745
https://doi.org/10.5281/zenodo.10558745
https://doi.org/10.5281/zenodo.10558745
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1007/978-3-319-40970-2_16
https://doi.org/10.1007/978-3-319-40970-2_16
https://doi.org/10.1007/978-3-319-40970-2_16
https://doi.org/10.1007/978-3-319-40970-2_16
https://doi.org/10.1007/978-3-319-40970-2_16
https://doi.org/10.1007/978-3-030-94583-1_24
https://doi.org/10.1007/978-3-030-94583-1_24

PolySAT: Word-level Bit-vector Reasoning in Z3 19

A Computing Intervals – Linear Inequality with Different
Coefficients

This section extends the discussion in Section 5.2, providing further details on
how interval bounds are analysed and computed.

Linear inequalities with different coefficients Consider an inequality c of the form
px+ q ≤u rx+ s with p̂ ̸= r̂. Here, we need to find the largest x-interval around
a sample point x0 where c is satisfied. As Figure 4a shows for an example, the
corresponding problem is easily solved over infinite domains, such as rationals, by
computing the intersection point of the left- and right-hand side of the inequality.
The interval extends from the intersection point towards infinity.

However, in modular arithmetic, the left-hand side and the right-hand side of
c do not represent continuous lines; instead, they wrap around at 2w as seen in
Figure 4b. The intervals extend from an intersection point to the next wraparound
point. We compute and return the interval containing x0.

We note that PolySAT computes only the intersection/wraparound points
nearest to x0. In some configurations, the gap between one interval to the next
(i.e., between the green lines in Figure 4b) does not contain an integer, which
means the obtained x-interval is not maximal. This method works best when the
coefficients p̂ and q̂ of x are near 0 or 2w.

0

(a) In Q.

0 2w − 1

(b) In Z/2wZ.

Fig. 4: Example for extracting intervals from an inequality constraint px+ q ≤u

rx+ s with different variable coefficients. The blue dashed line plots p̂x+ q̂, and
the red continuous line is r̂x+ ŝ.

20 Rath et al.

Computing intersection and wraparound points In order to work out the above
intuition more precisely, consider the inequality c of the form px+ q ≤u rx+ s
with p, q, r, s ∈ Z/2wZ such that p ̸= 0, r ̸= 0 and p ̸= r. Let x0 ∈ Z/2wZ be
a sample value that violates the constraint, i.e., such that (px0 + q)mod 2w >
(rx0 + s)mod 2w (to avoid confusion, we write “mod” operations in this section
explicitly).

The goal is to find a maximal x-interval around x0 whose elements all violate
the constraint, i.e., we want to find the minimal xl and the maximal xh such
that xl ≤ x0 ≤ xh and (px+ q)mod 2w > (rx+ s)mod 2w for all x ∈ [xl;xh].

In the following, we explain our method for extracting such intervals, however,
we cannot yet guarantee to obtain a maximal interval in all cases. As illustrated
in Figure 4, we extrapolate the left-hand side (LHS) and the right-hand side
(RHS) of the constraint using standard arithmetic until the next overflow point,
and extract the maximal interval that can be obtained without overflow.

Let us define the abbreviations a := (px0+q)mod 2w and b := (rx0+s)mod 2w.
From now on, we view p, q, r, s, a, b as values over the rationals Q by choosing
the representative in the interval [0; 2w[.

To compute a safe upper bound xh = x0 + δh, we find the maximal δh ∈ Z
satisfying the following conditions:
– δh ≥ 0, i.e., it should be an upper bound,
– ∀x.(0 ≤ x ≤ δh → 2w > a+ px > b+ rx ≥ 0), i.e., the LHS and RHS do not

overflow within the interval and the constraint is violated for all values,
– x0 + δh < 2w, i.e., the upper bound does not overflow.

After several transformations, we obtain the formula

δh = min

({
2w − x0,

⌈2w − a

p

⌉}
∪
{⌈a− b

r − p

⌉ ∣∣∣ r > p
})

− 1.

Similarly, we obtain a safe lower bound xl = x0 − δl, by finding the maximal
δl ∈ Z such that:
– δl ≥ 0 (it should be a lower bound),
– δl ≤ x0 (lower bound does not overflow),
– ∀x.(0 ≤ x ≤ δl → 2w > a− px > b− rx ≥ 0).

A sequence of transformations leads us to the formula

δl = min

({
x0 + 1,

⌈b+ 1

r

⌉}
∪
{⌈a− b

p− r

⌉ ∣∣∣ p > r
})

− 1.

Remark 1. At the beginning of this section, we embedded the coefficients p, q from
Z/2wZ into Q by choosing the representative in the interval [0; 2w[. However,
whenever p or q is a large value near 2w we may obtain better bounds by
interpreting them as negative numbers, i.e., choose the representative in the
interval [−2w; 0[instead. To obtain a uniform formula, we can simply plug in
p− 2w and q− 2w for p and q (or just one of them), respectively, in the formulas
above. In total, this gives us four different ways to estimate each bound. Since
each of these computations finds a safe bound, we choose the best among them.

PolySAT: Word-level Bit-vector Reasoning in Z3 21

Strict inequalities Finally, if we want to compute such bounds for a strict
inequality px + q <u rx + s, we only have to change the strictness of one
inequality in our initial conditions, i.e., replace a±px > b±rx by a±px ≥ b±rx.
In the final formulas, this manifests as replacing a−b in the numerator by a−b+1;
otherwise, the results are unchanged.

B Additional Lemmas

Lemma 9. Extended version of Lemma 3.

px <u qx =⇒ p ̸= q
px <u qx =⇒ Ω∗(p, x) ∨ p <u q
px <u qx =⇒ Ω∗(−q, x) ∨ p <u q
px <u qx =⇒ Ω∗(q,−x) ∨ p >u q ∨ p = 0
px <u qx =⇒ Ω∗(−p,−x) ∨ p >u q ∨ p = 0
px ≤u qx =⇒ Ω∗(p, x) ∨ p ≤u q ∨ x = 0
px ≤u qx =⇒ Ω∗(−q, x) ∨ p ≤u q ∨ x = 0 ∨ q = 0
px ≤u qx =⇒ Ω∗(q,−x) ∨ p ≥u q ∨ x = 0 ∨ p = 0
px ≤u qx =⇒ Ω∗(−p,−x) ∨ p ≥u q ∨ x = 0 ∨ p = 0
px+ s ≤u q =⇒ Ω∗(p, x) ∨ Ω+(px, s) ∨ pr ≤u q ∨ x <u r
p ≤u x ∧ qx ≤u r =⇒ Ω∗(q, x) ∨ pq ≤u r
p ≤u x ∧ qx <u r =⇒ Ω∗(q, x) ∨ pq <u r
p <u x ∧ qx ≤u r =⇒ Ω∗(q, x) ∨ pq <u r ∨ q = 0
p <u x ∧ qx ≤u r =⇒ Ω∗(q, x) ∨ pq <u r ∨ r = 0
p ≤u qx ∧ x ≤u r =⇒ Ω∗(q, r) ∨ p ≤u qr
p <u qx ∧ x ≤u r =⇒ Ω∗(q, r) ∨ p <u qr
p ≤u qx ∧ x <u r =⇒ Ω∗(q, r) ∨ p <u qr ∨ p = 0
p ≤u qx ∧ x <u r =⇒ Ω∗(q, r) ∨ p <u qr ∨ q = 0

Note that these rules do not require x ̸∈ p, q, r, s, so they can be applied even when
the degree of x is larger than 1.

Lemma 10 (x := p | q). Bit-wise or is handled similarly as bit-wise and.

⊤ =⇒ x ≥u p
p = 0 =⇒ x = q
p = −1 =⇒ x = −1
p = q =⇒ x = p
p[i] =⇒ x[i] for each 0 ≤ i < w
x[i] =⇒ p[i] ∨ q[i] for each 0 ≤ i < w

Lemma 11 (x := p<< q). For shift operations, we split on the second argument.

q ≥u w =⇒ x = 0
q = 0 =⇒ x = p
q = i =⇒ x = 2ip

for all constants i such that 0 < i < w.

22 Rath et al.

Lemma 12 (x := p >> q). Logical right-shift is analogous.

q ≥u w =⇒ x = 0
q = 0 =⇒ x = p
q = i =⇒ 2ix ≤u p ≤u 2

ix+ 2i − 1 ∧ x <u 2
w−i

for all constants i such that 0 < i < w.

Lemma 13 (x := p >>a q). The arithmetic right-shift must take into account
the sign bit p[w − 1].

p[w − 1] ∧ q ≥u w =⇒ x = −1
¬p[w − 1] ∧ q ≥u w =⇒ x = 0
q ≥u w =⇒ x+ 1 ≤u 1
q = 0 =⇒ x = p
q = i =⇒ 2ix ≤u p ≤u 2

ix+ 2i − 1
p[w − 1] ∧ q = i =⇒ x ≥u 2

w − 2w−i−1

¬p[w − 1] ∧ q = i =⇒ x <u 2
w−i−1

for all constants i such that 0 < i < w.

PolySAT performs partial bit-blasting for multiplication overflow predi-
cates. It is based on partitioning the conditions for overflow by using the sum
of most significant bits into three cases. To describe these, first let us define
the shorthand msb(p) for the one-based index of the most significant bit of p.
For example, msb(1) = 1,msb(2) = 2. It can be defined indirectly using the
equivalence msb(p) ≥ i ⇐⇒ p ≥u 2

i−1 for 1 ≤ i ≤ w. The cases are

msb(p) + msb(q) ≥ w + 2 =⇒ Ω∗(p, q)
msb(p) + msb(q) ≤ w =⇒ ¬Ω∗(p, q)
msb(p) + msb(q) = w + 1 =⇒

(
Ω∗(p, q) ⇐⇒ (0p) · (0q) ≥u 2

w
)
,

where 0p and 0q stand for the zero-extension by a single bit of p and q, respectively.
In other words, when the most significant bits add up to w, multiplication overflow
affects exactly one additional bit, so it suffices to extend p and q by a single bit
to determine overflow.

	PolySAT: Word-level Bit-vector Reasoning in Z3

