
Proof-Producing Symbolic Execution for P4

Didrik Lundberg1,2[0000−0001−9921−3257], Roberto
Guanciale1[0000−0002−8069−6495], and Mads Dam1[0000−0001−5432−6442]

1 KTH Royal Institute of Technology, Lindstedtsvägen 5, 100 44 Stockholm, Sweden
{didrikl, robertog, mfd}@kth.se

2 Saab AB, Nettovägen 6, 175 41 Järfälla, Sweden

Abstract. We introduce a proof-producing symbolic execution tool for
formal verification of P4 programs. The tool has been implemented us-
ing the interactive theorem prover HOL4 and results are proved sound
with respect to the the HOL4P4 formalisation of the P4 language. Most
notably, this is a general tool for proving functional correctness that can
be applied to entire real-world P4 programs.

Keywords: Theorem Proving · Formal Verification · Domain-Specific
Languages.

1 Introduction

P4 is the most popular domain-specific language for the data planes of pro-
grammable network elements, the hardware which the software-defined network-
ing (SDN) paradigm is built on. A software-defined network element separates
packet processing functionality into the control plane (which updates tables with
network topology and routing information) and the data plane (which performs
the actual bit-by-bit processing of packets). The interface between these two
planes is kept minimal. There exists a diverse range of targets for P4 from
terabit-bandwidth switches to network interface controllers and the Linux ker-
nel [23, 9].

Network elements that govern communication in critical systems must un-
dergo strict high-assurance certification. For the highest levels of certification,
formal verification is required - and for this, using an interactive theorem prover
(ITP) is ideal. The simplicity of P4 (absence of pointers, unbounded loops and
recursion) means that exhaustive formal reasoning needs to perform less com-
putation, rendering heavy-duty formal methods feasible for large programs.

The contributions3 presented in this paper are:

1. A concurrent, language-agnostic HOL4 symbolic execution framework (Sec-
tion 4).

3 The code for the tool presented in this paper can be found in the Github repository
at https://github.com/kth-step/HOL4P4 and the version as of writing this paper
at the tag VSTTE2024. The parts related to symbolic execution are found in the
hol/symb_exec directory.



2 D. Lundberg et al.

2. A formal verification tool for P4 programs that only requires minimal an-
notation (Section 5), including automated overapproximation methods for
interaction with external functions and data (Section 5.2), and usage of
multiple small-step semantics of different scope and granularity for increased
efficiency (Section 5.3).

3. Performance evaluation for a case study for the above (Section 7).

2 Background and Related Work

2.1 The P4 Language

P4 programs are structured as a pipeline consisting of programmable blocks.
These programmable blocks are either parser blocks or control blocks. Parser
blocks are similar to finite state machines: they consist of parser states which
typically extract the bits of the input packet into P4 headers (similar to C
structs), with unstructured jumps between them. Control blocks consist of (pos-
sibly branching) sequences of look-ups in tables configured by the control plane,
without loops. When verifying a P4 program, the content of some tables may be
known, while the content of others may be unknown.

Throughout P4 programs, external functions and objects (typically imple-
mented by the architecture in an FPGA or directly in ASICs) provide more
complex functionality such as hashing and checksum computation.

To illustrate significant language features, Figures 1 and 2 contain snippets
of a simplified version of the VSS example found in the P4 Specification [22]. The
program parses an Ethernet and an IPv4 header of an input packet, validates
the IPv4 checksum, then sets the output port based on the IPv4 destination
address. Figure 1 shows the parser block TopParser with the initial parser state
start. The extract method fills its struct arguments with bits from the raw
input packet b. The fields of the structs can then be accessed, as seen on line 8
of Figure 1. The select expression matches the argument - here, the etherType
field of p.ethernet - to value sets in a list (here the singleton set {0x8000} and
the set of all 16-bit values), and chooses the corresponding next parser state for
the transition statement based on this match.

The external Checksum16 object ck in Figure 1 can compute checksums from
IPv4 headers. External objects and functions do not have implementations writ-
ten in P4: they are provided by the target platform.

The verify statement checks that the predicate given as first argument holds.
If not, the parser block will transition to the reject state and set parseError
outside the programmable blocks to verify’s second argument.

The parser block is finished upon transitioning to the accept or reject state,
after which the out-directed block parameter p is copied out, to be used later.
Then, execution of the control block TopPipe shown in in Figure 2 commences:
p and parseError are copied in, and the content of the apply block between
lines 18 and 24 is executed.

The table application ipv4_match.apply() on line 20 looks up the value in
the key of ipv4_match (p.ip.dstAddr) in a table stored in the control plane:



Proof-Producing Symbolic Execution for P4 3

1 parser TopParser(packet_in b,
2 out Parsed_packet p) {
3 Checksum16 () ck;
4
5 state start {
6 b.extract(p.ethernet );
7 transition
8 select(p.ethernet.etherType) {
9 0x0800: parse_ipv4;

10 _: reject;
11 }
12 }
13
14 state parse_ipv4 {
15 b.extract(p.ip);
16 ck.clear ();
17 ck.update(p.ip);
18 verify(ck.get() == 16w0,
19 error.IPv4ChecksumError );
20 transition accept;
21 }
22 }

Fig. 1. Parser block snippet

1 control TopPipe(inout Parsed_packet p,
2 in error parseError ,
3 out OutControl outCtrl) {
4 action Drop_action () {
5 outCtrl.outputPort = DROP_PORT;
6 }
7
8 action Set_oport(PortId port) {
9 outCtrl.outputPort = port;

10 }
11
12 table ipv4_match {
13 key = {p.ip.dstAddr: lpm;}
14 actions = {Drop_action;
15 Set_oport ;}
16 }
17
18 apply {
19 if (parseError == error.NoError) {
20 ipv4_match.apply ();
21 } else {
22 Drop_action ();
23 }
24 }
25 }

Fig. 2. Control block snippet

note that the entries of the table are left unspecified by the P4 program. lpm
signifies a longest-prefix match, and the outcome of this match is the invocation
of either of the actions: Drop_action or Set_nhop, with arguments provided
by the control plane.

2.2 Related Work

Symbolic execution [13] summarises many execution traces into one, at the ex-
pense of having to fork execution into multiple paths upon encountering branches
in the control flow. While the classic notion of symbolic execution allows omit-
ting traces from analysis (i.e. underapproximation), this trace exclusion does not
allow for proving safety properties. Conversely, safety properties can be proved
using trace overapproximation. As such, the flavour of symbolic execution used
in this work is in a sense “trace-complete” or “overapproximating”.

At least since the 90s [21], it has been known that theorem provers offer a
shortcut to implementing something akin to symbolic execution by evaluating
terms with native free variables in place of concrete values. In the literature,
this shallow embedding of symbolic execution is also known as symbolic simu-
lation or symbolic evaluation. This technique implements symbolic branching in
the metalanguage, which does not yield a formal definition for which to prove
e.g. termination (of the symbolic execution itself). However, the absence of a
termination proof has no adverse effect on the soundness of the analysis.

Symbolic Execution Using HOL4 Holfoot [24, 25] is a tool that uses shal-
lowly embedded symbolic execution and an abstract separation logic to verify



4 D. Lundberg et al.

functional correctness of programs in the Smallfoot language. Note that using
separation logic for P4 is unnecessary, since the language does not involve pointer
arithmetic.

Collavizza and Gordon [4] have used shallowly embedded symbolic execution
to formally verify properties of Java programs, using an approach that depends
in part on unverified reasoning.

Campbell and Stark [3], and more recently Kanabar et al. [11], use shallowly
embedded symbolic execution based on the step library of Anthony Fox [6] for
test generation, compiler verification and cross-validation of ISA models.

Lindner [14] et al. describe a deeply embedded symbolic execution for the
unstructured BIR language used for binary analysis. The deeply-embedded ap-
proach allows to prove a formal metatheory about the symbolic execution itself.

In comparison to the above, our work is unique through the usage of multiple
small-step semantics of different scope and granularity to improve efficiency of
symbolic evaluation, overapproximation techniques and the contribution of a
language-agnostic symbolic execution framework.

There exists a plethora of tools for other ITPs that use symbolic execution-
based techniques for formal verification[16, 12, 19, 8]: to the authors’ knowledge
no comprehensive review comparing symbolic execution in different ITPs exists.
The authors could also not identify any other ITP-based work that combines
multiple symbolic semantic styles and uses automated overapproximation.

P4 Verification P4Cub [18] is an intermediate representation for P4 verifica-
tion with both big-step and small-step semantics formalised in Coq that has been
used for a non-proof-producing program verifier. Wang et al. introduce Verifi-
able P4 [26], a verification system implemented in Coq that uses semi-automatic
symbolic execution techniques together with reasoning in program logic to prove
correctness of P4 control blocks. In contrast, the symbolic execution presented
in this paper is fully automatic and covers the entire P4 pipeline. Leapfrog [5] is
an equivalence checker for P4 parsers implemented in Coq.

Vera [20] and P4pktgen [17] both use underapproximating symbolic execution
to find bugs in P4 programs. ASSERT-P4 [7] and p4v [15] are other non-proof-
producing verification tools for P4.

3 HOL4P4 Semantics

To implement the symbolic execution approach of this paper in an ITP, an
executable semantics is needed: here, “executable” means that reduction results
can be computed directly using standard evaluation facilities of the ITP. This
executable semantics is a deeply embedded function small(E, ρ, n) that computes
the result of n reductions (i.e. the transitive closure of n small-step reductions)
of the initial state ρ in the static environment E according to the semantics’
reduction rules. This work is built on the HOL4P4 semantics of Alshnakat et



Proof-Producing Symbolic Execution for P4 5

al. [1]4, presented in brief below, simplified for the sake of presentation. For
brevity, this executable semantics will be referred to simply as the “small-step
semantics” in the rest of the paper.

The semantics consists of four layers: architecture, frame, statement, and ex-
pression. The architecture layer connects the programmable blocks and governs
input and output. The frame layer ensures that the frame resulting from the
most recently called function is passed along to the statement semantics, and
handles function return.

All architecture-level reductions are made in the presence of a static envi-
ronment E, which contains the program and models of external functions. The
architecture-level state ρ = (io, α, i, γG,Φ, t) consists of lists of incoming and
outgoing packets io, an external state (of the runtime) α, the current block in-
dex i, a global store γG, a frame stack Φ and a status t. The status is used for
signaling function return and parser block transition from the statement-level to
the frame- and architecture-level semantics. Each frame in Φ corresponds to a
called function, with the top frame popped upon function return: functions are
restricted to manipulating their own frames. A frame Φ = s f

γ consists of the
associated function’s name f , the statement currently being reduced s, and a
variable store γ holding the values of local variables.

The frame layer reduces (α, γG, Φ, t) to tuples of the same type, with table
and function signatures from E in the local context. The statement layer has
the same signature as the frame layer, but with a single frame Φ instead. The
expression layer reduces expressions e to expressions (and a new frame in case
of function call), with the function signatures from E and the current scopes (γ
and γG) in the local context.

Figure 3 showcases the statement-level semantic rule for table application
using a fully reduced key v1,...,vn (a separate rule reduces the key using the
expression-level semantics). As an example, consider line 20 of Figure 2. Here,
the key consists of a single element: the value of p.ip.dstAddr. Using the static
table information stored in T (the match kind lpm), the key will be matched
to entries of match_ipv4 stored in α. The match result is an action f ′ with
arguments v ′

1,...,v
′
m, and the apply statement reduces to a call to this action.

The status is retained as run, signifying regular execution.

Apply
T (tbl , v1,...,vn, α) = (f ′ , v ′

1,...,v
′
m)

T F ⊢ (α, γG, [apply tbl v1,...,vn]
f
γ , run) −→ (α, γG, [null := f ′(v ′

1,...,v
′
m)] f

γ , run)

Fig. 3. Semantic rule for table application

The statements consist of the standard assignment, block, conditional and
return and the P4-specific extern statement ■, transition and apply.

4 A small extension to HOL4P4 is used, which adds value set types used for matching
in select expressions.



6 D. Lundberg et al.

The extern statement ■ can implement any behaviour that modifies α and
the local γ. Reduction of ■ uses the function name f of the current frame, and
looks up the implementation in the static environment: E(f) = ext , then uses it
to update α and γ: ext(α, γG, γ) = (α′, γ′, t′), where t′ is the resulting status.

transition is similar to a jump, with possible targets being different parser
states in the same programmable block.

Finally, apply matches a list of expressions e against a table tbl stored in α:
match(e, tbl , α) = a(arg). Then, apply is reduced to a call to the result a(arg).
Notably, ■ and apply are the only statements that interact with α.

The expressions consist of standard arithmetic and Boolean operators to-
gether with function calls (generating new frames when reduced) and the select
expression, which is typically found together with the transition statement. se-
lect can be thought of as matching against membership in value sets. Values are
modeled with bit-level granularity, and we represent e.g. a bit-string of width 4
as b1b2b3b4, with b1 . . . b4 being the individual bits.

4 Symbolic Execution Framework

4.1 Shallow Symbolic Execution

The goal of the symbolic execution approach presented here is to provide a
generic tool that requires only an executable small-step semantics and minimal
proof additions to enable symbolic execution, while still allowing for incremental
performance improvements.

The basic idea for re-using an executable semantics for symbolic execution is
as follows:

1. To model symbolic values, use HOL4 native free variables in place of concrete
values.

2. Prevent state explosion by restricting evaluation of arithmetic dependent on
free variables when reducing expressions to values: for example, not unfolding
the definition of (primitive) addition of bitstrings in b1b2b3+010, where b1, b2
and b3 are HOL4 free variables of bit type. The result can then get assigned
to a variable as-is.

3. Fork the symbolic execution whenever a branch is dependent on a HOL4 free
variable, maintaining a list of n-step theorems with path conditions:

P =⇒ small(ρ, n) = ρ′

stating that given the path condition P , n small-step execution steps from
ρ results in ρ′. Note that P and ρ can share HOL4 free variables. small is a
partial function that is undefined when a run-time error occurs, which can
be implemented using an option type.

With this approach, it is not necessary to modify the executable semantics in any
way. The maintenance of separate n-step theorems for separate paths means that
the semantics does not have to formalise the notion of paths or path conditions.



Proof-Producing Symbolic Execution for P4 7

Around 200 additional lines of HOL4 proof scripts are needed for a minimal im-
plementation of HOL4P4 symbolic execution. Note that the symbolic execution
can not in general produce a strongest postcondition, since it allows overap-
proximation. If no overapproximation was used, the strongest predicate obeyed
by the final state of every path can be informally thought of as the strongest
postcondition.

4.2 N-chotomy Theorems

To prove no execution traces are dropped by the symbolic execution, it is neces-
sary to prove an n-chotomy theorem every time the symbolic execution is forked.
This theorem exhaustively enumerates as disjuncts all possible outcomes that
might result from values of the free variables in the construct that the semantics
branches on. For example, the n-chotomy theorem of the select expression on
line 8 of Figure 1 would state that b1 . . . b16 ∈ {0x8000} ∨ b1 . . . b16 /∈ {0x8000},
where b1 . . . b16 is the result of reducing p.ethernet.etherType.

After the n-chotomy theorem has been proved, some disjuncts may be im-
mediately ruled out (pruned) using the path condition. Then, the symbolic ex-
ecution is forked, with each new path condition gaining (by conjunction) one
disjunct from the n-chotomy theorem. The n-chotomy theorems themselves are
stored in a tree structure that keeps track of which paths resulted from which
choices: every non-leaf node holds an n-chotomy theorem and every leaf holds a
unique identifier that pairs it with a path (n-step theorem). The n-chotomy tree
is used later when proving properties about the result of the symbolic execution.

4.3 Abstract Symbolic Execution Algorithm

Part of the symbolic execution machinery is language-agnostic and has therefore
been written as an abstract framework that can be instantiated to perform sym-
bolic execution of other languages. The language parameters are the following
functions:

1. regular_step: takes the current n-step theorem and performs m regular ex-
ecution steps starting from the current state, then composes the result with
the previous, yielding an n+m-step theorem. The simplest possible imple-
mentation would just rely on direct evaluation of the executable semantics
used, doable in less than 10 LoC in HOL4.

2. should_branch: looks at the current n-step theorem and decides whether to
fork the symbolic execution or not. If yes, it returns an n-chotomy theorem
and a list of forked n-step theorems, to whose path conditions the cases of
the n-chotomy theorem have been added.

3. is_finished: looks at the current n-step theorem and decides whether ex-
ecution on that path has finished or not.

The final output of the symbolic execution algorithm is a list of n-step the-
orems (as described in Section 4) and a tree with n-chotomy theorems (as de-
scribed in Section 5.2). Provided the implementations of regular_step, should_branch



8 D. Lundberg et al.

and is_finished are thread-safe, the abstract symbolic execution framework is
capable of running them concurrently. Concurrency is achieved via a simple
mutex-based job scheduler that synchronizes the common datastructure holding
the n-chotomy tree and n-step theorems.

4.4 Coarse-Grained Semantics

The semantics of a language may have notions of locality that permit simplified
reductions inside different locales. Perhaps the most obvious one is the locale
of functions: restricting the semantics to reductions inside individual functions
can strip the semantics of much complexity. Another optimization can be done
for semantics with multiple layers, where collapsing multiple steps into one can
effectively “cache” computations from layers above. The HOL4P4 case of this
optimization is shown in Figure 4. This paper uses “coarse-grained semantics”
to refer to the type of semantics with restrictions and optimizations described
by the above paragraph relative to the base small-step semantics.

To use a coarse-grained together with a fine-grained small-step semantics, it
is necessary to compose their executions: this can be done via the usual com-
position theorems for small-step execution so long as a soundness theorem, like
Proposition 1, is proved. This is stated relative to some update and proj : the
function proj extracts information from ρ to construct a coarse-grained state s,
and update takes a resulting coarse-grained state and modifies ρ accordingly.

Proposition 1 (Soundness of Coarse-Grained Semantics). If proj (ρ) =
s, coarse(s) = (s′, n) and update(ρ, s′) = ρ′, then small(ρ, n) = ρ′ .

5 HOL4P4 Symbolic Execution

5.1 Regular HOL4P4 Execution Steps

“Regular” steps are steps where no overapproximation or fork of the symbolic
execution occurs. However, regular steps may still involve operations using sym-
bolic variables. The regular execution step implementation is based on the call-
by-value reduction engine CBV_CONV [2] with a custom compset of rewrites and
conversions. In addition to this, rewriting using the path condition is also per-
formed as needed: typically this involves restricting evaluation of some functions
(using RESTR_CBV_CONV), rewriting, and then resuming evaluation without this
restriction. Some functions involving arithmetic are never evaluated in the main
loop to prevent state explosion - instead, they are selectively extracted and eval-
uated separately. At the end, the result of evaluating one step from the current
final state is composed with the existing n-step theorem, forming an n+ 1-step
theorem.

The main issue with this approach is the large size of the theorems involved.
We have solved this in part by introducing definitions for the (very large) static
environment E and its components, which are unfolded and folded back as
needed. For parts of the mutable state that may contain HOL4 variables, this



Proof-Producing Symbolic Execution for P4 9

is more difficult, but is in part solved by a type of approximation described in
Section 5.2. Note that in practice, the HOL4P4 symbolic execution will always
terminate using repeated regular steps: the control blocks are loop-free, and
realistic P4 programs either hard-code bounds on variable-length headers and
extension headers, or limit their size by a preceding field determining length.

5.2 HOL4P4 N-chotomy Theorems

Other than the conditional statement, the two other branching HOL4P4 lan-
guage constructs are select expressions (in transition statements) and apply
statements. select expressions match a value v to value sets V1, . . . , Vn in a list
ranked from 1 to n, with the outcomes being parser state names st1, . . . , stn. In
that case, the n-chotomy theorem would be

v ∈ V1 ∨ (v ∈ V2 ∧ v /∈ V1) ∨ . . . ∨ (v ∈ Vn ∧ v /∈ Vn−1 ∪ . . . ∪ v /∈ V1)

with every outcome ruling out the outcomes ranked above it. Note that the value
v can be a complex HOL4 term involving multiple free variables.

The apply case exposes some quirks of P4 and the networking setting, due
to the complex match kinds and reading external table content (key-value pairs)
from the control plane. For tables with known content, the resulting n-chotomy
theorem looks rather similar to that for select.

The case when table entries are not known at verification time (for example,
the table ipv4_match in Figure 2) is more interesting. Since in P4, a table
tbl must list all possible actions a1 . . . an that can result from a match, the
n-chotomy can be stated in terms of the resulting action. Such an n-chotomy
theorem can only be stated assuming the entries of tbl in α are well-formed in
this respect:

well-formed(tbl , α) ⇒
(∃b1 . . . bm1. match(v, tbl , α) = a1(b0 . . . bm1)) ∨ . . .

∨ (∃b1 . . . bmn. match(v, tbl , α) = an(b0 . . . bmn))

The arguments to the resulting actions have been restricted to single bitstrings of
length m for the sake of presentation. Typically, the well-formedness assumptions
are inserted into the initial path condition: this is justified by the P4 Specification
stating the control-plane runtime is responsible for only inserting valid entries
into tables. Assumptions on the values of arguments in the match result can also
be inserted into the initial path condition. This is used when one has partial
information of the table content: for example, that a match result will occur for
all IP addresses in the local network.

Although the concrete semantics of extern objects can be modeled from their
written descriptions, we often choose to overapproximate the outcome of e.g.
checksum computations by using fresh HOL4 variables for the individual bits
of their result. This is done by providing a list of the externs to potentially be
approximated. Then it is decided whether to approximate or not based on the



10 D. Lundberg et al.

γ of the top frame, and theorems are proved that overapproximate the effect of
the extern (some sub-function of the extern implementation) for that γ, using
existentially quantified HOL4 variables. This approximation theorem is then
used like a 1-chotomy theorem by the rest of the framework.

5.3 HOL4P4 Coarse-Grained Semantics

For the HOL4P4 small-step semantics, many design choices were made that make
it more suitable for a formal metatheory, but less efficient for computation. The
most severe issue is that every single execution step must traverse every level
from top (architecture) to bottom: first, an architectural reduction is chosen,
then a frame reduction, then a statement and expression-level reduction, every
layer forwarding appropriate information to the next. A more efficient approach

arch

frame

stmt

exp

1 2 3

Fine-grained

1 2 3

Coarse-grained

Fig. 4. Reductions on semantic layers: fine-grained vs. coarse-grained

that can be implemented as a coarse-grained executable semantics is to keep
reducing on a lower layer (for example, the expression layer) until the expression
is fully reduced, similar to a reduction in big-step semantics, and only then return
to the layer above. This is illustrated in Figure 4.

Additionally, if the coarse-grained semantics is limited to a simple fragment
of the HOL4P4 syntax (i.e., no ■, no apply, no function call and no return), it
is possible to simplify the reductions greatly: the external state α can be disre-
garded since it is only interacted with by ■ and apply. The static environment
E is not needed, since on the statement level it is only used for function call
and apply. Since no function return is allowed, the status and all frames except
the topmost can also be disregarded. This partiality is implemented by having
the coarse-grained semantics halt once a disallowed statement is about to be
reduced and return the current statement, allowing for the small-step semantics
to continue from the resulting state. In practice, it is preferable to use multiple
coarse-grained semantics that first treat a more complex statement using the
necessary elements of ρ and E, then continue using the above minimal coarse-
grained semantics.



Proof-Producing Symbolic Execution for P4 11

6 Proving Contracts for HOL4P4

One use case of the symbolic execution result is to prove contracts, as defined in
Definition 1: flexible enough to accommodate any functional correctness prop-
erty. Note that the symbolic execution result is independent of this notion of
contracts and can be used for other ends, e.g. for proving simulation theorems
or in interactive proofs.

Definition 1 (Contract). The contract {P}E {Q} holds iff for the precondi-
tion P , static environment E and postcondition Q

∀ρ. P (ρ) ⇒ ∃n > 0. ∃ρ′. small(E, ρ, n) = ρ′ ∧Q(ρ′) .

Note that ρ and ρ′ contain not only variable maps, but also the program currently
being reduced. To avoid spurious proofs where Q only holds for some interme-
diate states, Q can include a finish condition (e.g. “last block was just reduced,
no more input packets pending”). Also, since HOL4 functions are deterministic
ρ′ can be existentially quantified.

Contracts are obtained by proving that the postcondition holds for every final
state of the n-step theorems resulting from the symbolic execution, after which all
resulting contracts are unified to one by using the n-chotomy theorems. Should
the postcondition not be provable for some path, this will be printed, providing
a possible counterexample. The contract derivation procedure is fully automatic.
Note that the overapproximation described in Section 5.2 allows proving a valid
contract as long as it does not introduce new paths and if any free variables
introduced does not affect the postcondition.

If the end goal is not to prove a contract with a provided postcondition,
another approach could be to instead prove the postcondition of the symbolic
execution: Q(ρ) = (P1(ρ) ⇒ ρ = ρ1) ∧ . . . ∧ (Pn(ρ) ⇒ ρ = ρn), where n is the
number of paths. This could then also be used to prove the contract.

7 Evaluation

As a small case study, the tool has been applied to the P4 implementation of
IPsec tunneling by Hauser et al. [10].5

The overapproximation techniques have been implemented for externs from
the V1Model architecture, allowing to abstract from large structures and com-
putations which would otherwise make verification infeasible. During develop-
ment, we have also constructed a small validation suite of P4 programs with
pre- and postconditions. Some performance numbers are shown in Table 1: lines
of code, total verification time, average reduction times for fine-grained and
coarse-grained, and the number of paths at the end. The coarse-grained average
reduction time is obtained by dividing the sum of all coarse-grained reduction
5 See hol/symb_exec/basicScript.sml: the contract establishes the postcondition
postcond given the precondition path_cond.



12 D. Lundberg et al.

times with the corresponding number of fine-grained reductions. To get an idea
of how the tool scales, the IPsec example (basic.p4) is compared to one of the
validation tests (table-unknown.p4), an order of magnitude smaller in size. To
verify programs an order of magnitude larger than basic.p4 in reasonable time,
one could prove multiple contracts for different parts of the P4 pipeline and
combine them. The experiments were ran on a laptop with an Intel i7-8550U
CPU.

Program LoC Total Time Avg. Red. Time
(fine-grained)

Avg. Red. Time
(coarse-grained)

Paths

basic.p4 396 30m 250ms 120ms 82
table-unknown.p4 78 34s 80ms 30ms 12

Table 1. Performance measurements

The generic symbolic execution framework6 is 500 LoC and the P4-specific
part 7500 LoC, of which 5000 for the coarse-grained semantics and its soundness
proof. To validate the claim that the symbolic execution framework is language-
agnostic, it was instantiated for a simple imperative language with while loops,
which took about an hour of work and required 300 LoC.

8 Conclusions

We have presented a theorem-grade symbolic execution tool for P4 that is able
to deal with quirks of the networking domain, by using overapproximation for
external implementations and unknown table configurations.

We show how, in the ITP setting, symbolic execution can be obtained easily
from the executable small-step semantics of a real language. Furthermore, a
significant part of the symbolic execution machinery is generic and can be re-used
for executable models of other languages. Also, we show how the performance
of this style of symbolic execution can be increased by pairing it with a coarse-
grained semantics.

For future work, the construction of a benchmark suite of P4 programs with
functional correctness properties would be helpful when comparing the perfor-
mance of different verification tools.

Acknowledgments. This work has been supported by the SEMLA project financed
by Vinnova (Sweden’s Innovation Agency). We would also like to thank the reviewers
for their valuable feedback.

6 The framework consists of hol/symb_exec/symb_execScript.sml
and hol/symb_exec/symb_execLib.sml.



Proof-Producing Symbolic Execution for P4 13

References

1. Alshnakat, A., Lundberg, D., Guanciale, R., Dam, M.: HOL4P4: Mechanized
small-step semantics for P4. Proceedings of the ACM on Programming Languages
8(OOPSLA1), 223–249 (2024)

2. Barras, B.: Programming and computing in HOL. In: International Conference on
Theorem Proving in Higher Order Logics. pp. 17–37. Springer (2000)

3. Campbell, B., Stark, I.: Extracting behaviour from an executable instruction set
model. In: 2016 Formal Methods in Computer-Aided Design (FMCAD). pp. 33–40
(2016). https://doi.org/10.1109/FMCAD.2016.7886658

4. Collavizza, H., Gordon, M.: Integration of Theorem-Proving and Constraint Pro-
gramming for Software Verification. Ph.D. thesis, Laboratoire I3S (2009)

5. Doenges, R., Kappé, T., Sarracino, J., Foster, N., Morrisett, G.: Leapfrog: Certi-
fied equivalence for protocol parsers. In: Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation.
p. 950–965. PLDI 2022 (2022). https://doi.org/10.1145/3519939.3523715

6. Fox, A.: Improved tool support for machine-code decompilation in HOL4. In: 6th
International Conference on Interactive Theorem Proving (ITP 2015). pp. 187–202
(2015). https://doi.org/10.1007/978-3-319-22102-1_12

7. Freire, L., Neves, M., Leal, L., Levchenko, K., Schaeffer-Filho, A., Barcel-
los, M.: Uncovering bugs in P4 programs with assertion-based verification.
In: Proceedings of the Symposium on SDN Research. SOSR ’18 (2018).
https://doi.org/10.1145/3185467.3185499

8. Gourdin, L., Bonneau, B., Boulmé, S., Monniaux, D., Bérard, A.: Formally verify-
ing optimizations with block simulations. Proceedings of the ACM on Programming
Languages 7(OOPSLA2), 59–88 (2023)

9. Hadi Salim, J., Chatterjee, D., Nogueira, V., Tammela, P., Osinski, T., Halep-
lidis, E., Sambasivam, B., Gupta, U., Jain, K., Sethuramapandian, S.: Introducing
P4TC-a P4 implementation on Linux kernel using traffic control. In: Proceedings
of the 6th on European P4 Workshop. pp. 25–32 (2023)

10. Hauser, F., Häberle, M., Schmidt, M., Menth, M.: P4-IPsec: Site-to-site and host-
to-site VPN with IPsec in P4-based SDN. IEEE Access 8, 139567–139586 (2020)

11. Kanabar, H., Fox, A.C., Myreen, M.O.: Taming an authoritative Armv8 ISA spec-
ification: L3 validation and CakeML compiler verification. In: 13th International
Conference on Interactive Theorem Proving (ITP 2022). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik (2022)

12. Keller, C.: Tactic program-based testing and bounded verification in Isabelle/HOL.
In: Tests and Proofs: 12th International Conference, TAP 2018, Held as Part of
STAF 2018, Toulouse, France, June 27-29, 2018, Proceedings 12. pp. 103–119.
Springer (2018)

13. King, J.C.: Symbolic execution and program testing. Communications of the ACM
19(7), 385–394 (1976)

14. Lindner, A., Guanciale, R., Dam, M.: Proof-producing symbolic execution for bi-
nary code verification. arXiv preprint arXiv:2304.08848 (2023)

15. Liu, J., Hallahan, W., Schlesinger, C., Sharif, M., Lee, J., Soulé, R., Wang,
H., Caşcaval, C., McKeown, N., Foster, N.: p4v: Practical verification for pro-
grammable data planes. In: Proceedings of the 2018 Conference of the ACM Spe-
cial Interest Group on Data Communication. p. 490–503. SIGCOMM ’18 (2018).
https://doi.org/10.1145/3230543.3230582



14 D. Lundberg et al.

16. Matthews, J., Moore, J.S., Ray, S., Vroon, D.: Verification condition generation via
theorem proving. In: Logic for Programming, Artificial Intelligence, and Reasoning:
13th International Conference, LPAR 2006, Phnom Penh, Cambodia, November
13-17, 2006. Proceedings 13. pp. 362–376. Springer (2006)

17. Nötzli, A., Khan, J., Fingerhut, A., Barrett, C., Athanas, P.: P4pktgen: Automated
test case generation for p4 programs. In: Proceedings of the Symposium on SDN
Research. pp. 1–7 (2018)

18. Peterson, R., Campbell, E.H., Chen, J., Isak, N., Shyu, C., Doenges, R., Ataei, P.,
Foster, N.: P4cub: A little language for big routers. In: Proceedings of the 12th
ACM SIGPLAN International Conference on Certified Programs and Proofs. pp.
303–319 (2023)

19. Ravindran, B.: Formal verification of memory preservation of x86-64 binaries. In:
Computer Safety, Reliability, and Security: 38th International Conference, SAFE-
COMP 2019, Turku, Finland, September 11–13, 2019, Proceedings. vol. 11698,
p. 35. Springer Nature (2019)

20. Stoenescu, R., Dumitrescu, D., Popovici, M., Negreanu, L., Raiciu, C.: Debugging
P4 programs with Vera. In: Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. pp. 518–532 (2018)

21. Strother Moore, J.: Symbolic simulation: An ACL2 approach. In: International
Conference on Formal Methods in Computer-Aided Design. pp. 334–350. Springer
(1998)

22. The P4 Language Consortium: P416 language specification (2023),
https://p4.org/p4-spec/docs/P4-16-v1.2.4.html

23. Tu, W., Ruffy, F., Budiu, M.: Linux network programming with P4. In: Linux
Plumb. Conf (2018)

24. Tuerk, T.: A formalisation of Smallfoot in HOL. In: International Conference on
Theorem Proving in Higher Order Logics. pp. 469–484. Springer (2009)

25. Tuerk, T.: A separation logic framework for HOL. Tech. rep., University of Cam-
bridge, Computer Laboratory (2011)

26. Wang, Q., Pan, M., Wang, S., Doenges, R., Beringer, L., Appel, A.W.: Founda-
tional verification of stateful P4 packet processing. In: 14th International Confer-
ence on Interactive Theorem Proving (ITP 2023). Schloss-Dagstuhl-Leibniz Zen-
trum für Informatik (2023)


